| | |
| | | #include "darknet.h"
|
| | |
|
| | | #include <stdio.h>
|
| | | #include <time.h>
|
| | | #include <assert.h>
|
| | |
|
| | | #include "network.h"
|
| | | #include "image.h"
|
| | | #include "data.h"
|
| | | #include "utils.h"
|
| | | #include "blas.h"
|
| | |
|
| | | #include "crop_layer.h"
|
| | | #include "connected_layer.h"
|
| | | #include "gru_layer.h"
|
| | | #include "rnn_layer.h"
|
| | | #include "crnn_layer.h"
|
| | | #include "conv_lstm_layer.h"
|
| | | #include "local_layer.h"
|
| | | #include "convolutional_layer.h"
|
| | | #include "activation_layer.h"
|
| | | #include "detection_layer.h"
|
| | | #include "region_layer.h"
|
| | | #include "normalization_layer.h"
|
| | | #include "batchnorm_layer.h"
|
| | | #include "maxpool_layer.h"
|
| | | #include "reorg_layer.h"
|
| | | #include "reorg_old_layer.h"
|
| | | #include "avgpool_layer.h"
|
| | | #include "cost_layer.h"
|
| | | #include "softmax_layer.h"
|
| | | #include "dropout_layer.h"
|
| | | #include "route_layer.h"
|
| | | #include "shortcut_layer.h"
|
| | | #include "scale_channels_layer.h"
|
| | | #include "sam_layer.h"
|
| | | #include "yolo_layer.h"
|
| | | #include "gaussian_yolo_layer.h"
|
| | | #include "upsample_layer.h"
|
| | | #include "parser.h"
|
| | |
|
| | | load_args get_base_args(network *net)
|
| | | {
|
| | | load_args args = { 0 };
|
| | | args.w = net->w;
|
| | | args.h = net->h;
|
| | | args.size = net->w;
|
| | |
|
| | | args.min = net->min_crop;
|
| | | args.max = net->max_crop;
|
| | | args.angle = net->angle;
|
| | | args.aspect = net->aspect;
|
| | | args.exposure = net->exposure;
|
| | | args.center = net->center;
|
| | | args.saturation = net->saturation;
|
| | | args.hue = net->hue;
|
| | | return args;
|
| | | }
|
| | |
|
| | | int64_t get_current_iteration(network net)
|
| | | {
|
| | | return *net.cur_iteration;
|
| | | }
|
| | |
|
| | | int get_current_batch(network net)
|
| | | {
|
| | | int batch_num = (*net.seen)/(net.batch*net.subdivisions);
|
| | | return batch_num;
|
| | | }
|
| | |
|
| | | /*
|
| | | void reset_momentum(network net)
|
| | | {
|
| | | if (net.momentum == 0) return;
|
| | | net.learning_rate = 0;
|
| | | net.momentum = 0;
|
| | | net.decay = 0;
|
| | | #ifdef GPU
|
| | | //if(net.gpu_index >= 0) update_network_gpu(net);
|
| | | #endif
|
| | | }
|
| | | */
|
| | |
|
| | | void reset_network_state(network *net, int b)
|
| | | {
|
| | | int i;
|
| | | for (i = 0; i < net->n; ++i) {
|
| | | #ifdef GPU
|
| | | layer l = net->layers[i];
|
| | | if (l.state_gpu) {
|
| | | fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1);
|
| | | }
|
| | | if (l.h_gpu) {
|
| | | fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1);
|
| | | }
|
| | | #endif
|
| | | }
|
| | | }
|
| | |
|
| | | void reset_rnn(network *net)
|
| | | {
|
| | | reset_network_state(net, 0);
|
| | | }
|
| | |
|
| | | float get_current_seq_subdivisions(network net)
|
| | | {
|
| | | int sequence_subdivisions = net.init_sequential_subdivisions;
|
| | |
|
| | | if (net.num_steps > 0)
|
| | | {
|
| | | int batch_num = get_current_batch(net);
|
| | | int i;
|
| | | for (i = 0; i < net.num_steps; ++i) {
|
| | | if (net.steps[i] > batch_num) break;
|
| | | sequence_subdivisions *= net.seq_scales[i];
|
| | | }
|
| | | }
|
| | | if (sequence_subdivisions < 1) sequence_subdivisions = 1;
|
| | | if (sequence_subdivisions > net.subdivisions) sequence_subdivisions = net.subdivisions;
|
| | | return sequence_subdivisions;
|
| | | }
|
| | |
|
| | | int get_sequence_value(network net)
|
| | | {
|
| | | int sequence = 1;
|
| | | if (net.sequential_subdivisions != 0) sequence = net.subdivisions / net.sequential_subdivisions;
|
| | | if (sequence < 1) sequence = 1;
|
| | | return sequence;
|
| | | }
|
| | |
|
| | | float get_current_rate(network net)
|
| | | {
|
| | | int batch_num = get_current_batch(net);
|
| | | int i;
|
| | | float rate;
|
| | | if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
|
| | | switch (net.policy) {
|
| | | case CONSTANT:
|
| | | return net.learning_rate;
|
| | | case STEP:
|
| | | return net.learning_rate * pow(net.scale, batch_num/net.step);
|
| | | case STEPS:
|
| | | rate = net.learning_rate;
|
| | | for(i = 0; i < net.num_steps; ++i){
|
| | | if(net.steps[i] > batch_num) return rate;
|
| | | rate *= net.scales[i];
|
| | | //if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net);
|
| | | }
|
| | | return rate;
|
| | | case EXP:
|
| | | return net.learning_rate * pow(net.gamma, batch_num);
|
| | | case POLY:
|
| | | return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
|
| | | //if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
|
| | | //return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power);
|
| | | case RANDOM:
|
| | | return net.learning_rate * pow(rand_uniform(0,1), net.power);
|
| | | case SIG:
|
| | | return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step))));
|
| | | case SGDR:
|
| | | {
|
| | | int last_iteration_start = 0;
|
| | | int cycle_size = net.batches_per_cycle;
|
| | | while ((last_iteration_start + cycle_size) < batch_num)
|
| | | {
|
| | | last_iteration_start += cycle_size;
|
| | | cycle_size *= net.batches_cycle_mult;
|
| | | }
|
| | | rate = net.learning_rate_min +
|
| | | 0.5*(net.learning_rate - net.learning_rate_min)
|
| | | * (1. + cos((float)(batch_num - last_iteration_start)*3.14159265 / cycle_size));
|
| | |
|
| | | return rate;
|
| | | }
|
| | | default:
|
| | | fprintf(stderr, "Policy is weird!\n");
|
| | | return net.learning_rate;
|
| | | }
|
| | | }
|
| | |
|
| | | char *get_layer_string(LAYER_TYPE a)
|
| | | {
|
| | | switch(a){
|
| | | case CONVOLUTIONAL:
|
| | | return "convolutional";
|
| | | case ACTIVE:
|
| | | return "activation";
|
| | | case LOCAL:
|
| | | return "local";
|
| | | case DECONVOLUTIONAL:
|
| | | return "deconvolutional";
|
| | | case CONNECTED:
|
| | | return "connected";
|
| | | case RNN:
|
| | | return "rnn";
|
| | | case GRU:
|
| | | return "gru";
|
| | | case LSTM:
|
| | | return "lstm";
|
| | | case CRNN:
|
| | | return "crnn";
|
| | | case MAXPOOL:
|
| | | return "maxpool";
|
| | | case REORG:
|
| | | return "reorg";
|
| | | case AVGPOOL:
|
| | | return "avgpool";
|
| | | case SOFTMAX:
|
| | | return "softmax";
|
| | | case DETECTION:
|
| | | return "detection";
|
| | | case REGION:
|
| | | return "region";
|
| | | case YOLO:
|
| | | return "yolo";
|
| | | case GAUSSIAN_YOLO:
|
| | | return "Gaussian_yolo";
|
| | | case DROPOUT:
|
| | | return "dropout";
|
| | | case CROP:
|
| | | return "crop";
|
| | | case COST:
|
| | | return "cost";
|
| | | case ROUTE:
|
| | | return "route";
|
| | | case SHORTCUT:
|
| | | return "shortcut";
|
| | | case SCALE_CHANNELS:
|
| | | return "scale_channels";
|
| | | case SAM:
|
| | | return "sam";
|
| | | case NORMALIZATION:
|
| | | return "normalization";
|
| | | case BATCHNORM:
|
| | | return "batchnorm";
|
| | | default:
|
| | | break;
|
| | | }
|
| | | return "none";
|
| | | }
|
| | |
|
| | | network make_network(int n)
|
| | | {
|
| | | network net = {0};
|
| | | net.n = n;
|
| | | net.layers = (layer*)xcalloc(net.n, sizeof(layer));
|
| | | net.seen = (uint64_t*)xcalloc(1, sizeof(uint64_t));
|
| | | net.cur_iteration = (int*)xcalloc(1, sizeof(int));
|
| | | #ifdef GPU
|
| | | net.input_gpu = (float**)xcalloc(1, sizeof(float*));
|
| | | net.truth_gpu = (float**)xcalloc(1, sizeof(float*));
|
| | |
|
| | | net.input16_gpu = (float**)xcalloc(1, sizeof(float*));
|
| | | net.output16_gpu = (float**)xcalloc(1, sizeof(float*));
|
| | | net.max_input16_size = (size_t*)xcalloc(1, sizeof(size_t));
|
| | | net.max_output16_size = (size_t*)xcalloc(1, sizeof(size_t));
|
| | | #endif
|
| | | return net;
|
| | | }
|
| | |
|
| | | void forward_network(network net, network_state state)
|
| | | {
|
| | | state.workspace = net.workspace;
|
| | | int i;
|
| | | for(i = 0; i < net.n; ++i){
|
| | | state.index = i;
|
| | | layer l = net.layers[i];
|
| | | if(l.delta && state.train){
|
| | | scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
|
| | | }
|
| | | //double time = get_time_point();
|
| | | l.forward(l, state);
|
| | | //printf("%d - Predicted in %lf milli-seconds.\n", i, ((double)get_time_point() - time) / 1000);
|
| | | state.input = l.output;
|
| | |
|
| | | /*
|
| | | float avg_val = 0;
|
| | | int k;
|
| | | for (k = 0; k < l.outputs; ++k) avg_val += l.output[k];
|
| | | printf(" i: %d - avg_val = %f \n", i, avg_val / l.outputs);
|
| | | */
|
| | | }
|
| | | }
|
| | |
|
| | | void update_network(network net)
|
| | | {
|
| | | int i;
|
| | | int update_batch = net.batch*net.subdivisions;
|
| | | float rate = get_current_rate(net);
|
| | | for(i = 0; i < net.n; ++i){
|
| | | layer l = net.layers[i];
|
| | | if(l.update){
|
| | | l.update(l, update_batch, rate, net.momentum, net.decay);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | float *get_network_output(network net)
|
| | | {
|
| | | #ifdef GPU
|
| | | if (gpu_index >= 0) return get_network_output_gpu(net);
|
| | | #endif
|
| | | int i;
|
| | | for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
|
| | | return net.layers[i].output;
|
| | | }
|
| | |
|
| | | float get_network_cost(network net)
|
| | | {
|
| | | int i;
|
| | | float sum = 0;
|
| | | int count = 0;
|
| | | for(i = 0; i < net.n; ++i){
|
| | | if(net.layers[i].cost){
|
| | | sum += net.layers[i].cost[0];
|
| | | ++count;
|
| | | }
|
| | | }
|
| | | return sum/count;
|
| | | }
|
| | |
|
| | | int get_predicted_class_network(network net)
|
| | | {
|
| | | float *out = get_network_output(net);
|
| | | int k = get_network_output_size(net);
|
| | | return max_index(out, k);
|
| | | }
|
| | |
|
| | | void backward_network(network net, network_state state)
|
| | | {
|
| | | int i;
|
| | | float *original_input = state.input;
|
| | | float *original_delta = state.delta;
|
| | | state.workspace = net.workspace;
|
| | | for(i = net.n-1; i >= 0; --i){
|
| | | state.index = i;
|
| | | if(i == 0){
|
| | | state.input = original_input;
|
| | | state.delta = original_delta;
|
| | | }else{
|
| | | layer prev = net.layers[i-1];
|
| | | state.input = prev.output;
|
| | | state.delta = prev.delta;
|
| | | }
|
| | | layer l = net.layers[i];
|
| | | if (l.stopbackward) break;
|
| | | if (l.onlyforward) continue;
|
| | | l.backward(l, state);
|
| | | }
|
| | | }
|
| | |
|
| | | float train_network_datum(network net, float *x, float *y)
|
| | | {
|
| | | #ifdef GPU
|
| | | if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
|
| | | #endif
|
| | | network_state state={0};
|
| | | *net.seen += net.batch;
|
| | | state.index = 0;
|
| | | state.net = net;
|
| | | state.input = x;
|
| | | state.delta = 0;
|
| | | state.truth = y;
|
| | | state.train = 1;
|
| | | forward_network(net, state);
|
| | | backward_network(net, state);
|
| | | float error = get_network_cost(net);
|
| | | //if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net);
|
| | | return error;
|
| | | }
|
| | |
|
| | | float train_network_sgd(network net, data d, int n)
|
| | | {
|
| | | int batch = net.batch;
|
| | | float* X = (float*)xcalloc(batch * d.X.cols, sizeof(float));
|
| | | float* y = (float*)xcalloc(batch * d.y.cols, sizeof(float));
|
| | |
|
| | | int i;
|
| | | float sum = 0;
|
| | | for(i = 0; i < n; ++i){
|
| | | get_random_batch(d, batch, X, y);
|
| | | net.current_subdivision = i;
|
| | | float err = train_network_datum(net, X, y);
|
| | | sum += err;
|
| | | }
|
| | | free(X);
|
| | | free(y);
|
| | | return (float)sum/(n*batch);
|
| | | }
|
| | |
|
| | | float train_network(network net, data d)
|
| | | {
|
| | | return train_network_waitkey(net, d, 0);
|
| | | }
|
| | |
|
| | | float train_network_waitkey(network net, data d, int wait_key)
|
| | | {
|
| | | assert(d.X.rows % net.batch == 0);
|
| | | int batch = net.batch;
|
| | | int n = d.X.rows / batch;
|
| | | float* X = (float*)xcalloc(batch * d.X.cols, sizeof(float));
|
| | | float* y = (float*)xcalloc(batch * d.y.cols, sizeof(float));
|
| | |
|
| | | int i;
|
| | | float sum = 0;
|
| | | for(i = 0; i < n; ++i){
|
| | | get_next_batch(d, batch, i*batch, X, y);
|
| | | net.current_subdivision = i;
|
| | | float err = train_network_datum(net, X, y);
|
| | | sum += err;
|
| | | if(wait_key) wait_key_cv(5);
|
| | | }
|
| | | (*net.cur_iteration) += 1;
|
| | | #ifdef GPU
|
| | | update_network_gpu(net);
|
| | | #else // GPU
|
| | | update_network(net);
|
| | | #endif // GPU
|
| | | free(X);
|
| | | free(y);
|
| | | return (float)sum/(n*batch);
|
| | | }
|
| | |
|
| | |
|
| | | float train_network_batch(network net, data d, int n)
|
| | | {
|
| | | int i,j;
|
| | | network_state state={0};
|
| | | state.index = 0;
|
| | | state.net = net;
|
| | | state.train = 1;
|
| | | state.delta = 0;
|
| | | float sum = 0;
|
| | | int batch = 2;
|
| | | for(i = 0; i < n; ++i){
|
| | | for(j = 0; j < batch; ++j){
|
| | | int index = random_gen()%d.X.rows;
|
| | | state.input = d.X.vals[index];
|
| | | state.truth = d.y.vals[index];
|
| | | forward_network(net, state);
|
| | | backward_network(net, state);
|
| | | sum += get_network_cost(net);
|
| | | }
|
| | | update_network(net);
|
| | | }
|
| | | return (float)sum/(n*batch);
|
| | | }
|
| | |
|
| | | int recalculate_workspace_size(network *net)
|
| | | {
|
| | | #ifdef GPU
|
| | | cuda_set_device(net->gpu_index);
|
| | | if (gpu_index >= 0) cuda_free(net->workspace);
|
| | | #endif
|
| | | int i;
|
| | | size_t workspace_size = 0;
|
| | | for (i = 0; i < net->n; ++i) {
|
| | | layer l = net->layers[i];
|
| | | //printf(" %d: layer = %d,", i, l.type);
|
| | | if (l.type == CONVOLUTIONAL) {
|
| | | l.workspace_size = get_convolutional_workspace_size(l);
|
| | | }
|
| | | else if (l.type == CONNECTED) {
|
| | | l.workspace_size = get_connected_workspace_size(l);
|
| | | }
|
| | | if (l.workspace_size > workspace_size) workspace_size = l.workspace_size;
|
| | | net->layers[i] = l;
|
| | | }
|
| | |
|
| | | #ifdef GPU
|
| | | if (gpu_index >= 0) {
|
| | | printf("\n try to allocate additional workspace_size = %1.2f MB \n", (float)workspace_size / 1000000);
|
| | | net->workspace = cuda_make_array(0, workspace_size / sizeof(float) + 1);
|
| | | printf(" CUDA allocate done! \n");
|
| | | }
|
| | | else {
|
| | | free(net->workspace);
|
| | | net->workspace = (float*)xcalloc(1, workspace_size);
|
| | | }
|
| | | #else
|
| | | free(net->workspace);
|
| | | net->workspace = (float*)xcalloc(1, workspace_size);
|
| | | #endif
|
| | | //fprintf(stderr, " Done!\n");
|
| | | return 0;
|
| | | }
|
| | |
|
| | | void set_batch_network(network *net, int b)
|
| | | {
|
| | | net->batch = b;
|
| | | int i;
|
| | | for(i = 0; i < net->n; ++i){
|
| | | net->layers[i].batch = b;
|
| | |
|
| | | #ifdef CUDNN
|
| | | if(net->layers[i].type == CONVOLUTIONAL){
|
| | | cudnn_convolutional_setup(net->layers + i, cudnn_fastest, 0);
|
| | | }
|
| | | else if (net->layers[i].type == MAXPOOL) {
|
| | | cudnn_maxpool_setup(net->layers + i);
|
| | | }
|
| | | #endif
|
| | |
|
| | | }
|
| | | recalculate_workspace_size(net); // recalculate workspace size
|
| | | }
|
| | |
|
| | | int resize_network(network *net, int w, int h)
|
| | | {
|
| | | #ifdef GPU
|
| | | cuda_set_device(net->gpu_index);
|
| | | if(gpu_index >= 0){
|
| | | cuda_free(net->workspace);
|
| | | if (net->input_gpu) {
|
| | | cuda_free(*net->input_gpu);
|
| | | *net->input_gpu = 0;
|
| | | cuda_free(*net->truth_gpu);
|
| | | *net->truth_gpu = 0;
|
| | | }
|
| | |
|
| | | if (net->input_state_gpu) cuda_free(net->input_state_gpu);
|
| | | if (net->input_pinned_cpu) {
|
| | | if (net->input_pinned_cpu_flag) cudaFreeHost(net->input_pinned_cpu);
|
| | | else free(net->input_pinned_cpu);
|
| | | }
|
| | | }
|
| | | #endif
|
| | | int i;
|
| | | //if(w == net->w && h == net->h) return 0;
|
| | | net->w = w;
|
| | | net->h = h;
|
| | | int inputs = 0;
|
| | | size_t workspace_size = 0;
|
| | | //fprintf(stderr, "Resizing to %d x %d...\n", w, h);
|
| | | //fflush(stderr);
|
| | | for (i = 0; i < net->n; ++i){
|
| | | layer l = net->layers[i];
|
| | | //printf(" (resize %d: layer = %d) , ", i, l.type);
|
| | | if(l.type == CONVOLUTIONAL){
|
| | | resize_convolutional_layer(&l, w, h);
|
| | | }
|
| | | else if (l.type == CRNN) {
|
| | | resize_crnn_layer(&l, w, h);
|
| | | }else if (l.type == CONV_LSTM) {
|
| | | resize_conv_lstm_layer(&l, w, h);
|
| | | }else if(l.type == CROP){
|
| | | resize_crop_layer(&l, w, h);
|
| | | }else if(l.type == MAXPOOL){
|
| | | resize_maxpool_layer(&l, w, h);
|
| | | }else if (l.type == LOCAL_AVGPOOL) {
|
| | | resize_maxpool_layer(&l, w, h);
|
| | | }else if (l.type == BATCHNORM) {
|
| | | resize_batchnorm_layer(&l, w, h);
|
| | | }else if(l.type == REGION){
|
| | | resize_region_layer(&l, w, h);
|
| | | }else if (l.type == YOLO) {
|
| | | resize_yolo_layer(&l, w, h);
|
| | | }else if (l.type == GAUSSIAN_YOLO) {
|
| | | resize_gaussian_yolo_layer(&l, w, h);
|
| | | }else if(l.type == ROUTE){
|
| | | resize_route_layer(&l, net);
|
| | | }else if (l.type == SHORTCUT) {
|
| | | resize_shortcut_layer(&l, w, h, net);
|
| | | }else if (l.type == SCALE_CHANNELS) {
|
| | | resize_scale_channels_layer(&l, net);
|
| | | }else if (l.type == SAM) {
|
| | | resize_sam_layer(&l, w, h);
|
| | | }else if (l.type == DROPOUT) {
|
| | | resize_dropout_layer(&l, inputs);
|
| | | l.out_w = l.w = w;
|
| | | l.out_h = l.h = h;
|
| | | l.output = net->layers[i - 1].output;
|
| | | l.delta = net->layers[i - 1].delta;
|
| | | #ifdef GPU
|
| | | l.output_gpu = net->layers[i-1].output_gpu;
|
| | | l.delta_gpu = net->layers[i-1].delta_gpu;
|
| | | #endif
|
| | | }else if (l.type == UPSAMPLE) {
|
| | | resize_upsample_layer(&l, w, h);
|
| | | }else if(l.type == REORG){
|
| | | resize_reorg_layer(&l, w, h);
|
| | | } else if (l.type == REORG_OLD) {
|
| | | resize_reorg_old_layer(&l, w, h);
|
| | | }else if(l.type == AVGPOOL){
|
| | | resize_avgpool_layer(&l, w, h);
|
| | | }else if(l.type == NORMALIZATION){
|
| | | resize_normalization_layer(&l, w, h);
|
| | | }else if(l.type == COST){
|
| | | resize_cost_layer(&l, inputs);
|
| | | }else{
|
| | | fprintf(stderr, "Resizing type %d \n", (int)l.type);
|
| | | error("Cannot resize this type of layer");
|
| | | }
|
| | | if(l.workspace_size > workspace_size) workspace_size = l.workspace_size;
|
| | | inputs = l.outputs;
|
| | | net->layers[i] = l;
|
| | | //if(l.type != DROPOUT)
|
| | | {
|
| | | w = l.out_w;
|
| | | h = l.out_h;
|
| | | }
|
| | | //if(l.type == AVGPOOL) break;
|
| | | }
|
| | | #ifdef GPU
|
| | | const int size = get_network_input_size(*net) * net->batch;
|
| | | if(gpu_index >= 0){
|
| | | printf(" try to allocate additional workspace_size = %1.2f MB \n", (float)workspace_size / 1000000);
|
| | | net->workspace = cuda_make_array(0, workspace_size/sizeof(float) + 1);
|
| | | net->input_state_gpu = cuda_make_array(0, size);
|
| | | if (cudaSuccess == cudaHostAlloc(&net->input_pinned_cpu, size * sizeof(float), cudaHostRegisterMapped))
|
| | | net->input_pinned_cpu_flag = 1;
|
| | | else {
|
| | | cudaGetLastError(); // reset CUDA-error
|
| | | net->input_pinned_cpu = (float*)xcalloc(size, sizeof(float));
|
| | | net->input_pinned_cpu_flag = 0;
|
| | | }
|
| | | printf(" CUDA allocate done! \n");
|
| | | }else {
|
| | | free(net->workspace);
|
| | | net->workspace = (float*)xcalloc(1, workspace_size);
|
| | | if(!net->input_pinned_cpu_flag)
|
| | | net->input_pinned_cpu = (float*)xrealloc(net->input_pinned_cpu, size * sizeof(float));
|
| | | }
|
| | | #else
|
| | | free(net->workspace);
|
| | | net->workspace = (float*)xcalloc(1, workspace_size);
|
| | | #endif
|
| | | //fprintf(stderr, " Done!\n");
|
| | | return 0;
|
| | | }
|
| | |
|
| | | int get_network_output_size(network net)
|
| | | {
|
| | | int i;
|
| | | for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
|
| | | return net.layers[i].outputs;
|
| | | }
|
| | |
|
| | | int get_network_input_size(network net)
|
| | | {
|
| | | return net.layers[0].inputs;
|
| | | }
|
| | |
|
| | | detection_layer get_network_detection_layer(network net)
|
| | | {
|
| | | int i;
|
| | | for(i = 0; i < net.n; ++i){
|
| | | if(net.layers[i].type == DETECTION){
|
| | | return net.layers[i];
|
| | | }
|
| | | }
|
| | | fprintf(stderr, "Detection layer not found!!\n");
|
| | | detection_layer l = { (LAYER_TYPE)0 };
|
| | | return l;
|
| | | }
|
| | |
|
| | | image get_network_image_layer(network net, int i)
|
| | | {
|
| | | layer l = net.layers[i];
|
| | | if (l.out_w && l.out_h && l.out_c){
|
| | | return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
|
| | | }
|
| | | image def = {0};
|
| | | return def;
|
| | | }
|
| | |
|
| | | layer* get_network_layer(network* net, int i)
|
| | | {
|
| | | return net->layers + i;
|
| | | }
|
| | |
|
| | | image get_network_image(network net)
|
| | | {
|
| | | int i;
|
| | | for(i = net.n-1; i >= 0; --i){
|
| | | image m = get_network_image_layer(net, i);
|
| | | if(m.h != 0) return m;
|
| | | }
|
| | | image def = {0};
|
| | | return def;
|
| | | }
|
| | |
|
| | | void visualize_network(network net)
|
| | | {
|
| | | image *prev = 0;
|
| | | int i;
|
| | | char buff[256];
|
| | | for(i = 0; i < net.n; ++i){
|
| | | sprintf(buff, "Layer %d", i);
|
| | | layer l = net.layers[i];
|
| | | if(l.type == CONVOLUTIONAL){
|
| | | prev = visualize_convolutional_layer(l, buff, prev);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void top_predictions(network net, int k, int *index)
|
| | | {
|
| | | int size = get_network_output_size(net);
|
| | | float *out = get_network_output(net);
|
| | | top_k(out, size, k, index);
|
| | | }
|
| | |
|
| | | // A version of network_predict that uses a pointer for the network
|
| | | // struct to make the python binding work properly.
|
| | | float *network_predict_ptr(network *net, float *input)
|
| | | {
|
| | | return network_predict(*net, input);
|
| | | }
|
| | |
|
| | | float *network_predict(network net, float *input)
|
| | | {
|
| | | #ifdef GPU
|
| | | if(gpu_index >= 0) return network_predict_gpu(net, input);
|
| | | #endif
|
| | |
|
| | | network_state state = {0};
|
| | | state.net = net;
|
| | | state.index = 0;
|
| | | state.input = input;
|
| | | state.truth = 0;
|
| | | state.train = 0;
|
| | | state.delta = 0;
|
| | | forward_network(net, state);
|
| | | float *out = get_network_output(net);
|
| | | return out;
|
| | | }
|
| | |
|
| | | int num_detections(network *net, float thresh)
|
| | | {
|
| | | int i;
|
| | | int s = 0;
|
| | | for (i = 0; i < net->n; ++i) {
|
| | | layer l = net->layers[i];
|
| | | if (l.type == YOLO) {
|
| | | s += yolo_num_detections(l, thresh);
|
| | | }
|
| | | if (l.type == GAUSSIAN_YOLO) {
|
| | | s += gaussian_yolo_num_detections(l, thresh);
|
| | | }
|
| | | if (l.type == DETECTION || l.type == REGION) {
|
| | | s += l.w*l.h*l.n;
|
| | | }
|
| | | }
|
| | | return s;
|
| | | }
|
| | |
|
| | | int num_detections_batch(network *net, float thresh, int batch)
|
| | | {
|
| | | int i;
|
| | | int s = 0;
|
| | | for (i = 0; i < net->n; ++i) {
|
| | | layer l = net->layers[i];
|
| | | if (l.type == YOLO) {
|
| | | s += yolo_num_detections_batch(l, thresh, batch);
|
| | | }
|
| | | if (l.type == DETECTION || l.type == REGION) {
|
| | | s += l.w*l.h*l.n;
|
| | | }
|
| | | }
|
| | | return s;
|
| | | }
|
| | |
|
| | | detection *make_network_boxes(network *net, float thresh, int *num)
|
| | | {
|
| | | layer l = net->layers[net->n - 1];
|
| | | int i;
|
| | | int nboxes = num_detections(net, thresh);
|
| | | if (num) *num = nboxes;
|
| | | detection* dets = (detection*)xcalloc(nboxes, sizeof(detection));
|
| | | for (i = 0; i < nboxes; ++i) {
|
| | | dets[i].prob = (float*)xcalloc(l.classes, sizeof(float));
|
| | | // tx,ty,tw,th uncertainty
|
| | | if(l.type == GAUSSIAN_YOLO) dets[i].uc = (float*)xcalloc(4, sizeof(float)); // Gaussian_YOLOv3
|
| | | if (l.coords > 4) {
|
| | | dets[i].mask = (float*)xcalloc(l.coords - 4, sizeof(float));
|
| | | }
|
| | | }
|
| | | return dets;
|
| | | }
|
| | |
|
| | | detection *make_network_boxes_batch(network *net, float thresh, int *num, int batch)
|
| | | {
|
| | | int i;
|
| | | layer l = net->layers[net->n - 1];
|
| | | int nboxes = num_detections_batch(net, thresh, batch);
|
| | | assert(num != NULL);
|
| | | *num = nboxes;
|
| | | detection* dets = (detection*)calloc(nboxes, sizeof(detection));
|
| | | for (i = 0; i < nboxes; ++i) {
|
| | | dets[i].prob = (float*)calloc(l.classes, sizeof(float));
|
| | | if (l.coords > 4) {
|
| | | dets[i].mask = (float*)calloc(l.coords - 4, sizeof(float));
|
| | | }
|
| | | }
|
| | | return dets;
|
| | | }
|
| | |
|
| | | void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter)
|
| | | {
|
| | | box* boxes = (box*)xcalloc(l.w * l.h * l.n, sizeof(box));
|
| | | float** probs = (float**)xcalloc(l.w * l.h * l.n, sizeof(float*));
|
| | | int i, j;
|
| | | for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float*)xcalloc(l.classes, sizeof(float));
|
| | | get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map);
|
| | | for (j = 0; j < l.w*l.h*l.n; ++j) {
|
| | | dets[j].classes = l.classes;
|
| | | dets[j].bbox = boxes[j];
|
| | | dets[j].objectness = 1;
|
| | | for (i = 0; i < l.classes; ++i) {
|
| | | dets[j].prob[i] = probs[j][i];
|
| | | }
|
| | | }
|
| | |
|
| | | free(boxes);
|
| | | free_ptrs((void **)probs, l.w*l.h*l.n);
|
| | |
|
| | | //correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative);
|
| | | correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter);
|
| | | }
|
| | |
|
| | | void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter)
|
| | | {
|
| | | int prev_classes = -1;
|
| | | int j;
|
| | | for (j = 0; j < net->n; ++j) {
|
| | | layer l = net->layers[j];
|
| | | if (l.type == YOLO) {
|
| | | int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
|
| | | dets += count;
|
| | | if (prev_classes < 0) prev_classes = l.classes;
|
| | | else if (prev_classes != l.classes) {
|
| | | printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n",
|
| | | prev_classes, l.classes);
|
| | | }
|
| | | }
|
| | | if (l.type == GAUSSIAN_YOLO) {
|
| | | int count = get_gaussian_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
|
| | | dets += count;
|
| | | }
|
| | | if (l.type == REGION) {
|
| | | custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
|
| | | //get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
|
| | | dets += l.w*l.h*l.n;
|
| | | }
|
| | | if (l.type == DETECTION) {
|
| | | get_detection_detections(l, w, h, thresh, dets);
|
| | | dets += l.w*l.h*l.n;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void fill_network_boxes_batch(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter, int batch)
|
| | | {
|
| | | int prev_classes = -1;
|
| | | int j;
|
| | | for (j = 0; j < net->n; ++j) {
|
| | | layer l = net->layers[j];
|
| | | if (l.type == YOLO) {
|
| | | int count = get_yolo_detections_batch(l, w, h, net->w, net->h, thresh, map, relative, dets, letter, batch);
|
| | | dets += count;
|
| | | if (prev_classes < 0) prev_classes = l.classes;
|
| | | else if (prev_classes != l.classes) {
|
| | | printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n",
|
| | | prev_classes, l.classes);
|
| | | }
|
| | | }
|
| | | if (l.type == REGION) {
|
| | | custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
|
| | | //get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
|
| | | dets += l.w*l.h*l.n;
|
| | | }
|
| | | if (l.type == DETECTION) {
|
| | | get_detection_detections(l, w, h, thresh, dets);
|
| | | dets += l.w*l.h*l.n;
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter)
|
| | | {
|
| | | detection *dets = make_network_boxes(net, thresh, num);
|
| | | fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
|
| | | return dets;
|
| | | }
|
| | |
|
| | | void free_detections(detection *dets, int n)
|
| | | {
|
| | | int i;
|
| | | for (i = 0; i < n; ++i) {
|
| | | free(dets[i].prob);
|
| | | if (dets[i].uc) free(dets[i].uc);
|
| | | if (dets[i].mask) free(dets[i].mask);
|
| | | }
|
| | | free(dets);
|
| | | }
|
| | |
|
| | | void free_batch_detections(det_num_pair *det_num_pairs, int n)
|
| | | {
|
| | | int i;
|
| | | for(i=0; i<n; ++i)
|
| | | free_detections(det_num_pairs[i].dets, det_num_pairs[i].num);
|
| | | free(det_num_pairs);
|
| | | }
|
| | |
|
| | | // JSON format:
|
| | | //{
|
| | | // "frame_id":8990,
|
| | | // "objects":[
|
| | | // {"class_id":4, "name":"aeroplane", "relative coordinates":{"center_x":0.398831, "center_y":0.630203, "width":0.057455, "height":0.020396}, "confidence":0.793070},
|
| | | // {"class_id":14, "name":"bird", "relative coordinates":{"center_x":0.398831, "center_y":0.630203, "width":0.057455, "height":0.020396}, "confidence":0.265497}
|
| | | // ]
|
| | | //},
|
| | |
|
| | | char *detection_to_json(detection *dets, int nboxes, int classes, char **names, long long int frame_id, char *filename)
|
| | | {
|
| | | const float thresh = 0.005; // function get_network_boxes() has already filtred dets by actual threshold
|
| | |
|
| | | char *send_buf = (char *)calloc(1024, sizeof(char));
|
| | | if (!send_buf) return 0;
|
| | | if (filename) {
|
| | | sprintf(send_buf, "{\n \"frame_id\":%lld, \n \"filename\":\"%s\", \n \"objects\": [ \n", frame_id, filename);
|
| | | }
|
| | | else {
|
| | | sprintf(send_buf, "{\n \"frame_id\":%lld, \n \"objects\": [ \n", frame_id);
|
| | | }
|
| | |
|
| | | int i, j;
|
| | | int class_id = -1;
|
| | | for (i = 0; i < nboxes; ++i) {
|
| | | for (j = 0; j < classes; ++j) {
|
| | | int show = strncmp(names[j], "dont_show", 9);
|
| | | if (dets[i].prob[j] > thresh && show)
|
| | | {
|
| | | if (class_id != -1) strcat(send_buf, ", \n");
|
| | | class_id = j;
|
| | | char *buf = (char *)calloc(2048, sizeof(char));
|
| | | if (!buf) return 0;
|
| | | //sprintf(buf, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f}",
|
| | | // image_id, j, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h, dets[i].prob[j]);
|
| | |
|
| | | sprintf(buf, " {\"class_id\":%d, \"name\":\"%s\", \"relative_coordinates\":{\"center_x\":%f, \"center_y\":%f, \"width\":%f, \"height\":%f}, \"confidence\":%f}",
|
| | | j, names[j], dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h, dets[i].prob[j]);
|
| | |
|
| | | int send_buf_len = strlen(send_buf);
|
| | | int buf_len = strlen(buf);
|
| | | int total_len = send_buf_len + buf_len + 100;
|
| | | send_buf = (char *)realloc(send_buf, total_len * sizeof(char));
|
| | | if (!send_buf) {
|
| | | if (buf) free(buf);
|
| | | return 0;// exit(-1);
|
| | | }
|
| | | strcat(send_buf, buf);
|
| | | free(buf);
|
| | | }
|
| | | }
|
| | | }
|
| | | strcat(send_buf, "\n ] \n}");
|
| | | return send_buf;
|
| | | }
|
| | |
|
| | |
|
| | | float *network_predict_image(network *net, image im)
|
| | | {
|
| | | //image imr = letterbox_image(im, net->w, net->h);
|
| | | float *p;
|
| | | if(net->batch != 1) set_batch_network(net, 1);
|
| | | if (im.w == net->w && im.h == net->h) {
|
| | | // Input image is the same size as our net, predict on that image
|
| | | p = network_predict(*net, im.data);
|
| | | }
|
| | | else {
|
| | | // Need to resize image to the desired size for the net
|
| | | image imr = resize_image(im, net->w, net->h);
|
| | | p = network_predict(*net, imr.data);
|
| | | free_image(imr);
|
| | | }
|
| | | return p;
|
| | | }
|
| | |
|
| | | det_num_pair* network_predict_batch(network *net, image im, int batch_size, int w, int h, float thresh, float hier, int *map, int relative, int letter)
|
| | | {
|
| | | network_predict(*net, im.data);
|
| | | det_num_pair *pdets = (struct det_num_pair *)calloc(batch_size, sizeof(det_num_pair));
|
| | | int num;
|
| | | int batch;
|
| | | for(batch=0; batch < batch_size; batch++){
|
| | | detection *dets = make_network_boxes_batch(net, thresh, &num, batch);
|
| | | fill_network_boxes_batch(net, w, h, thresh, hier, map, relative, dets, letter, batch);
|
| | | pdets[batch].num = num;
|
| | | pdets[batch].dets = dets;
|
| | | }
|
| | | return pdets;
|
| | | }
|
| | |
|
| | | float *network_predict_image_letterbox(network *net, image im)
|
| | | {
|
| | | //image imr = letterbox_image(im, net->w, net->h);
|
| | | float *p;
|
| | | if (net->batch != 1) set_batch_network(net, 1);
|
| | | if (im.w == net->w && im.h == net->h) {
|
| | | // Input image is the same size as our net, predict on that image
|
| | | p = network_predict(*net, im.data);
|
| | | }
|
| | | else {
|
| | | // Need to resize image to the desired size for the net
|
| | | image imr = letterbox_image(im, net->w, net->h);
|
| | | p = network_predict(*net, imr.data);
|
| | | free_image(imr);
|
| | | }
|
| | | return p;
|
| | | }
|
| | |
|
| | | int network_width(network *net) { return net->w; }
|
| | | int network_height(network *net) { return net->h; }
|
| | |
|
| | | matrix network_predict_data_multi(network net, data test, int n)
|
| | | {
|
| | | int i,j,b,m;
|
| | | int k = get_network_output_size(net);
|
| | | matrix pred = make_matrix(test.X.rows, k);
|
| | | float* X = (float*)xcalloc(net.batch * test.X.rows, sizeof(float));
|
| | | for(i = 0; i < test.X.rows; i += net.batch){
|
| | | for(b = 0; b < net.batch; ++b){
|
| | | if(i+b == test.X.rows) break;
|
| | | memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
| | | }
|
| | | for(m = 0; m < n; ++m){
|
| | | float *out = network_predict(net, X);
|
| | | for(b = 0; b < net.batch; ++b){
|
| | | if(i+b == test.X.rows) break;
|
| | | for(j = 0; j < k; ++j){
|
| | | pred.vals[i+b][j] += out[j+b*k]/n;
|
| | | }
|
| | | }
|
| | | }
|
| | | }
|
| | | free(X);
|
| | | return pred;
|
| | | }
|
| | |
|
| | | matrix network_predict_data(network net, data test)
|
| | | {
|
| | | int i,j,b;
|
| | | int k = get_network_output_size(net);
|
| | | matrix pred = make_matrix(test.X.rows, k);
|
| | | float* X = (float*)xcalloc(net.batch * test.X.cols, sizeof(float));
|
| | | for(i = 0; i < test.X.rows; i += net.batch){
|
| | | for(b = 0; b < net.batch; ++b){
|
| | | if(i+b == test.X.rows) break;
|
| | | memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
| | | }
|
| | | float *out = network_predict(net, X);
|
| | | for(b = 0; b < net.batch; ++b){
|
| | | if(i+b == test.X.rows) break;
|
| | | for(j = 0; j < k; ++j){
|
| | | pred.vals[i+b][j] = out[j+b*k];
|
| | | }
|
| | | }
|
| | | }
|
| | | free(X);
|
| | | return pred;
|
| | | }
|
| | |
|
| | | void print_network(network net)
|
| | | {
|
| | | int i,j;
|
| | | for(i = 0; i < net.n; ++i){
|
| | | layer l = net.layers[i];
|
| | | float *output = l.output;
|
| | | int n = l.outputs;
|
| | | float mean = mean_array(output, n);
|
| | | float vari = variance_array(output, n);
|
| | | fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
|
| | | if(n > 100) n = 100;
|
| | | for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
|
| | | if(n == 100)fprintf(stderr,".....\n");
|
| | | fprintf(stderr, "\n");
|
| | | }
|
| | | }
|
| | |
|
| | | void compare_networks(network n1, network n2, data test)
|
| | | {
|
| | | matrix g1 = network_predict_data(n1, test);
|
| | | matrix g2 = network_predict_data(n2, test);
|
| | | int i;
|
| | | int a,b,c,d;
|
| | | a = b = c = d = 0;
|
| | | for(i = 0; i < g1.rows; ++i){
|
| | | int truth = max_index(test.y.vals[i], test.y.cols);
|
| | | int p1 = max_index(g1.vals[i], g1.cols);
|
| | | int p2 = max_index(g2.vals[i], g2.cols);
|
| | | if(p1 == truth){
|
| | | if(p2 == truth) ++d;
|
| | | else ++c;
|
| | | }else{
|
| | | if(p2 == truth) ++b;
|
| | | else ++a;
|
| | | }
|
| | | }
|
| | | printf("%5d %5d\n%5d %5d\n", a, b, c, d);
|
| | | float num = pow((abs(b - c) - 1.), 2.);
|
| | | float den = b + c;
|
| | | printf("%f\n", num/den);
|
| | | }
|
| | |
|
| | | float network_accuracy(network net, data d)
|
| | | {
|
| | | matrix guess = network_predict_data(net, d);
|
| | | float acc = matrix_topk_accuracy(d.y, guess,1);
|
| | | free_matrix(guess);
|
| | | return acc;
|
| | | }
|
| | |
|
| | | float *network_accuracies(network net, data d, int n)
|
| | | {
|
| | | static float acc[2];
|
| | | matrix guess = network_predict_data(net, d);
|
| | | acc[0] = matrix_topk_accuracy(d.y, guess, 1);
|
| | | acc[1] = matrix_topk_accuracy(d.y, guess, n);
|
| | | free_matrix(guess);
|
| | | return acc;
|
| | | }
|
| | |
|
| | | float network_accuracy_multi(network net, data d, int n)
|
| | | {
|
| | | matrix guess = network_predict_data_multi(net, d, n);
|
| | | float acc = matrix_topk_accuracy(d.y, guess,1);
|
| | | free_matrix(guess);
|
| | | return acc;
|
| | | }
|
| | |
|
| | | void free_network(network net)
|
| | | {
|
| | | int i;
|
| | | for (i = 0; i < net.n; ++i) {
|
| | | free_layer(net.layers[i]);
|
| | | }
|
| | | free(net.layers);
|
| | |
|
| | | free(net.seq_scales);
|
| | | free(net.scales);
|
| | | free(net.steps);
|
| | | free(net.seen);
|
| | | free(net.cur_iteration);
|
| | |
|
| | | #ifdef GPU
|
| | | if (gpu_index >= 0) cuda_free(net.workspace);
|
| | | else free(net.workspace);
|
| | | free_pinned_memory();
|
| | | if (net.input_state_gpu) cuda_free(net.input_state_gpu);
|
| | | if (net.input_pinned_cpu) { // CPU
|
| | | if (net.input_pinned_cpu_flag) cudaFreeHost(net.input_pinned_cpu);
|
| | | else free(net.input_pinned_cpu);
|
| | | }
|
| | | if (*net.input_gpu) cuda_free(*net.input_gpu);
|
| | | if (*net.truth_gpu) cuda_free(*net.truth_gpu);
|
| | | if (net.input_gpu) free(net.input_gpu);
|
| | | if (net.truth_gpu) free(net.truth_gpu);
|
| | |
|
| | | if (*net.input16_gpu) cuda_free(*net.input16_gpu);
|
| | | if (*net.output16_gpu) cuda_free(*net.output16_gpu);
|
| | | if (net.input16_gpu) free(net.input16_gpu);
|
| | | if (net.output16_gpu) free(net.output16_gpu);
|
| | | if (net.max_input16_size) free(net.max_input16_size);
|
| | | if (net.max_output16_size) free(net.max_output16_size);
|
| | | #else
|
| | | free(net.workspace);
|
| | | #endif
|
| | | }
|
| | |
|
| | | static float relu(float src) {
|
| | | if (src > 0) return src;
|
| | | return 0;
|
| | | }
|
| | |
|
| | | static float lrelu(float src) {
|
| | | const float eps = 0.001;
|
| | | if (src > eps) return src;
|
| | | return eps;
|
| | | }
|
| | |
|
| | | void fuse_conv_batchnorm(network net)
|
| | | {
|
| | | int j;
|
| | | for (j = 0; j < net.n; ++j) {
|
| | | layer *l = &net.layers[j];
|
| | |
|
| | | if (l->type == CONVOLUTIONAL) {
|
| | | //printf(" Merges Convolutional-%d and batch_norm \n", j);
|
| | |
|
| | | if (l->share_layer != NULL) {
|
| | | l->batch_normalize = 0;
|
| | | }
|
| | |
|
| | | if (l->batch_normalize) {
|
| | | int f;
|
| | | for (f = 0; f < l->n; ++f)
|
| | | {
|
| | | l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f] + .00001));
|
| | |
|
| | | const size_t filter_size = l->size*l->size*l->c / l->groups;
|
| | | int i;
|
| | | for (i = 0; i < filter_size; ++i) {
|
| | | int w_index = f*filter_size + i;
|
| | |
|
| | | l->weights[w_index] = (double)l->weights[w_index] * l->scales[f] / (sqrt((double)l->rolling_variance[f] + .00001));
|
| | | }
|
| | | }
|
| | |
|
| | | free_convolutional_batchnorm(l);
|
| | | l->batch_normalize = 0;
|
| | | #ifdef GPU
|
| | | if (gpu_index >= 0) {
|
| | | push_convolutional_layer(*l);
|
| | | }
|
| | | #endif
|
| | | }
|
| | | }
|
| | | else if (l->type == SHORTCUT && l->weights && l->weights_normalization)
|
| | | {
|
| | | if (l->nweights > 0) {
|
| | | //cuda_pull_array(l.weights_gpu, l.weights, l.nweights);
|
| | | int i;
|
| | | for (i = 0; i < l->nweights; ++i) printf(" w = %f,", l->weights[i]);
|
| | | printf(" l->nweights = %d, j = %d \n", l->nweights, j);
|
| | | }
|
| | |
|
| | | // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w)
|
| | | const int layer_step = l->nweights / (l->n + 1); // 1 or l.c or (l.c * l.h * l.w)
|
| | |
|
| | | int chan, i;
|
| | | for (chan = 0; chan < layer_step; ++chan)
|
| | | {
|
| | | float sum = 1, max_val = -FLT_MAX;
|
| | |
|
| | | if (l->weights_normalization == SOFTMAX_NORMALIZATION) {
|
| | | for (i = 0; i < (l->n + 1); ++i) {
|
| | | int w_index = chan + i * layer_step;
|
| | | float w = l->weights[w_index];
|
| | | if (max_val < w) max_val = w;
|
| | | }
|
| | | }
|
| | |
|
| | | const float eps = 0.0001;
|
| | | sum = eps;
|
| | |
|
| | | for (i = 0; i < (l->n + 1); ++i) {
|
| | | int w_index = chan + i * layer_step;
|
| | | float w = l->weights[w_index];
|
| | | if (l->weights_normalization == RELU_NORMALIZATION) sum += lrelu(w);
|
| | | else if (l->weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val);
|
| | | }
|
| | |
|
| | | for (i = 0; i < (l->n + 1); ++i) {
|
| | | int w_index = chan + i * layer_step;
|
| | | float w = l->weights[w_index];
|
| | | if (l->weights_normalization == RELU_NORMALIZATION) w = lrelu(w) / sum;
|
| | | else if (l->weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum;
|
| | | l->weights[w_index] = w;
|
| | | }
|
| | | }
|
| | |
|
| | | l->weights_normalization = NO_NORMALIZATION;
|
| | |
|
| | | #ifdef GPU
|
| | | if (gpu_index >= 0) {
|
| | | push_shortcut_layer(*l);
|
| | | }
|
| | | #endif
|
| | | }
|
| | | else {
|
| | | //printf(" Fusion skip layer type: %d \n", l->type);
|
| | | }
|
| | | }
|
| | | }
|
| | |
|
| | | void forward_blank_layer(layer l, network_state state) {}
|
| | |
|
| | | void calculate_binary_weights(network net)
|
| | | {
|
| | | int j;
|
| | | for (j = 0; j < net.n; ++j) {
|
| | | layer *l = &net.layers[j];
|
| | |
|
| | | if (l->type == CONVOLUTIONAL) {
|
| | | //printf(" Merges Convolutional-%d and batch_norm \n", j);
|
| | |
|
| | | if (l->xnor) {
|
| | | //printf("\n %d \n", j);
|
| | | //l->lda_align = 256; // 256bit for AVX2 // set in make_convolutional_layer()
|
| | | //if (l->size*l->size*l->c >= 2048) l->lda_align = 512;
|
| | |
|
| | | binary_align_weights(l);
|
| | |
|
| | | if (net.layers[j].use_bin_output) {
|
| | | l->activation = LINEAR;
|
| | | }
|
| | |
|
| | | #ifdef GPU
|
| | | // fuse conv_xnor + shortcut -> conv_xnor
|
| | | if ((j + 1) < net.n && net.layers[j].type == CONVOLUTIONAL) {
|
| | | layer *sc = &net.layers[j + 1];
|
| | | if (sc->type == SHORTCUT && sc->w == sc->out_w && sc->h == sc->out_h && sc->c == sc->out_c)
|
| | | {
|
| | | l->bin_conv_shortcut_in_gpu = net.layers[net.layers[j + 1].index].output_gpu;
|
| | | l->bin_conv_shortcut_out_gpu = net.layers[j + 1].output_gpu;
|
| | |
|
| | | net.layers[j + 1].type = BLANK;
|
| | | net.layers[j + 1].forward_gpu = forward_blank_layer;
|
| | | }
|
| | | }
|
| | | #endif // GPU
|
| | | }
|
| | | }
|
| | | }
|
| | | //printf("\n calculate_binary_weights Done! \n");
|
| | |
|
| | | }
|
| | |
|
| | | void copy_cudnn_descriptors(layer src, layer *dst)
|
| | | {
|
| | | #ifdef CUDNN
|
| | | dst->normTensorDesc = src.normTensorDesc;
|
| | | dst->normDstTensorDesc = src.normDstTensorDesc;
|
| | | dst->normDstTensorDescF16 = src.normDstTensorDescF16;
|
| | |
|
| | | dst->srcTensorDesc = src.srcTensorDesc;
|
| | | dst->dstTensorDesc = src.dstTensorDesc;
|
| | |
|
| | | dst->srcTensorDesc16 = src.srcTensorDesc16;
|
| | | dst->dstTensorDesc16 = src.dstTensorDesc16;
|
| | | #endif // CUDNN
|
| | | }
|
| | |
|
| | | void copy_weights_net(network net_train, network *net_map)
|
| | | {
|
| | | int k;
|
| | | for (k = 0; k < net_train.n; ++k) {
|
| | | layer *l = &(net_train.layers[k]);
|
| | | layer tmp_layer;
|
| | | copy_cudnn_descriptors(net_map->layers[k], &tmp_layer);
|
| | | net_map->layers[k] = net_train.layers[k];
|
| | | copy_cudnn_descriptors(tmp_layer, &net_map->layers[k]);
|
| | |
|
| | | if (l->type == CRNN) {
|
| | | layer tmp_input_layer, tmp_self_layer, tmp_output_layer;
|
| | | copy_cudnn_descriptors(*net_map->layers[k].input_layer, &tmp_input_layer);
|
| | | copy_cudnn_descriptors(*net_map->layers[k].self_layer, &tmp_self_layer);
|
| | | copy_cudnn_descriptors(*net_map->layers[k].output_layer, &tmp_output_layer);
|
| | | net_map->layers[k].input_layer = net_train.layers[k].input_layer;
|
| | | net_map->layers[k].self_layer = net_train.layers[k].self_layer;
|
| | | net_map->layers[k].output_layer = net_train.layers[k].output_layer;
|
| | | //net_map->layers[k].output_gpu = net_map->layers[k].output_layer->output_gpu; // already copied out of if()
|
| | |
|
| | | copy_cudnn_descriptors(tmp_input_layer, net_map->layers[k].input_layer);
|
| | | copy_cudnn_descriptors(tmp_self_layer, net_map->layers[k].self_layer);
|
| | | copy_cudnn_descriptors(tmp_output_layer, net_map->layers[k].output_layer);
|
| | | }
|
| | | else if(l->input_layer) // for AntiAliasing
|
| | | {
|
| | | layer tmp_input_layer;
|
| | | copy_cudnn_descriptors(*net_map->layers[k].input_layer, &tmp_input_layer);
|
| | | net_map->layers[k].input_layer = net_train.layers[k].input_layer;
|
| | | copy_cudnn_descriptors(tmp_input_layer, net_map->layers[k].input_layer);
|
| | | }
|
| | | net_map->layers[k].batch = 1;
|
| | | net_map->layers[k].steps = 1;
|
| | | }
|
| | | }
|
| | |
|
| | |
|
| | | // combine Training and Validation networks
|
| | | network combine_train_valid_networks(network net_train, network net_map)
|
| | | {
|
| | | network net_combined = make_network(net_train.n);
|
| | | layer *old_layers = net_combined.layers;
|
| | | net_combined = net_train;
|
| | | net_combined.layers = old_layers;
|
| | | net_combined.batch = 1;
|
| | |
|
| | | int k;
|
| | | for (k = 0; k < net_train.n; ++k) {
|
| | | layer *l = &(net_train.layers[k]);
|
| | | net_combined.layers[k] = net_train.layers[k];
|
| | | net_combined.layers[k].batch = 1;
|
| | |
|
| | | if (l->type == CONVOLUTIONAL) {
|
| | | #ifdef CUDNN
|
| | | net_combined.layers[k].normTensorDesc = net_map.layers[k].normTensorDesc;
|
| | | net_combined.layers[k].normDstTensorDesc = net_map.layers[k].normDstTensorDesc;
|
| | | net_combined.layers[k].normDstTensorDescF16 = net_map.layers[k].normDstTensorDescF16;
|
| | |
|
| | | net_combined.layers[k].srcTensorDesc = net_map.layers[k].srcTensorDesc;
|
| | | net_combined.layers[k].dstTensorDesc = net_map.layers[k].dstTensorDesc;
|
| | |
|
| | | net_combined.layers[k].srcTensorDesc16 = net_map.layers[k].srcTensorDesc16;
|
| | | net_combined.layers[k].dstTensorDesc16 = net_map.layers[k].dstTensorDesc16;
|
| | | #endif // CUDNN
|
| | | }
|
| | | }
|
| | | return net_combined;
|
| | | }
|
| | |
|
| | | void free_network_recurrent_state(network net)
|
| | | {
|
| | | int k;
|
| | | for (k = 0; k < net.n; ++k) {
|
| | | if (net.layers[k].type == CONV_LSTM) free_state_conv_lstm(net.layers[k]);
|
| | | if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]);
|
| | | }
|
| | | }
|
| | |
|
| | | void randomize_network_recurrent_state(network net)
|
| | | {
|
| | | int k;
|
| | | for (k = 0; k < net.n; ++k) {
|
| | | if (net.layers[k].type == CONV_LSTM) randomize_state_conv_lstm(net.layers[k]);
|
| | | if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]);
|
| | | }
|
| | | }
|
| | |
|
| | |
|
| | | void remember_network_recurrent_state(network net)
|
| | | {
|
| | | int k;
|
| | | for (k = 0; k < net.n; ++k) {
|
| | | if (net.layers[k].type == CONV_LSTM) remember_state_conv_lstm(net.layers[k]);
|
| | | //if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]);
|
| | | }
|
| | | }
|
| | |
|
| | | void restore_network_recurrent_state(network net)
|
| | | {
|
| | | int k;
|
| | | for (k = 0; k < net.n; ++k) {
|
| | | if (net.layers[k].type == CONV_LSTM) restore_state_conv_lstm(net.layers[k]);
|
| | | if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]);
|
| | | }
|
| | | }
|
| | | #include "darknet.h" |
| | | |
| | | #include <stdio.h> |
| | | #include <time.h> |
| | | #include <assert.h> |
| | | |
| | | #include "network.h" |
| | | #include "image.h" |
| | | #include "data.h" |
| | | #include "utils.h" |
| | | #include "blas.h" |
| | | |
| | | #include "crop_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "gru_layer.h" |
| | | #include "rnn_layer.h" |
| | | #include "crnn_layer.h" |
| | | #include "conv_lstm_layer.h" |
| | | #include "local_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "activation_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "region_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "batchnorm_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "reorg_layer.h" |
| | | #include "reorg_old_layer.h" |
| | | #include "avgpool_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "route_layer.h" |
| | | #include "shortcut_layer.h" |
| | | #include "scale_channels_layer.h" |
| | | #include "sam_layer.h" |
| | | #include "yolo_layer.h" |
| | | #include "gaussian_yolo_layer.h" |
| | | #include "upsample_layer.h" |
| | | #include "parser.h" |
| | | |
| | | load_args get_base_args(network *net) |
| | | { |
| | | load_args args = { 0 }; |
| | | args.w = net->w; |
| | | args.h = net->h; |
| | | args.size = net->w; |
| | | |
| | | args.min = net->min_crop; |
| | | args.max = net->max_crop; |
| | | args.angle = net->angle; |
| | | args.aspect = net->aspect; |
| | | args.exposure = net->exposure; |
| | | args.center = net->center; |
| | | args.saturation = net->saturation; |
| | | args.hue = net->hue; |
| | | return args; |
| | | } |
| | | |
| | | int64_t get_current_iteration(network net) |
| | | { |
| | | return *net.cur_iteration; |
| | | } |
| | | |
| | | int get_current_batch(network net) |
| | | { |
| | | int batch_num = (*net.seen)/(net.batch*net.subdivisions); |
| | | return batch_num; |
| | | } |
| | | |
| | | /* |
| | | void reset_momentum(network net) |
| | | { |
| | | if (net.momentum == 0) return; |
| | | net.learning_rate = 0; |
| | | net.momentum = 0; |
| | | net.decay = 0; |
| | | #ifdef GPU |
| | | //if(net.gpu_index >= 0) update_network_gpu(net); |
| | | #endif |
| | | } |
| | | */ |
| | | |
| | | void reset_network_state(network *net, int b) |
| | | { |
| | | int i; |
| | | for (i = 0; i < net->n; ++i) { |
| | | #ifdef GPU |
| | | layer l = net->layers[i]; |
| | | if (l.state_gpu) { |
| | | fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1); |
| | | } |
| | | if (l.h_gpu) { |
| | | fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1); |
| | | } |
| | | #endif |
| | | } |
| | | } |
| | | |
| | | void reset_rnn(network *net) |
| | | { |
| | | reset_network_state(net, 0); |
| | | } |
| | | |
| | | float get_current_seq_subdivisions(network net) |
| | | { |
| | | int sequence_subdivisions = net.init_sequential_subdivisions; |
| | | |
| | | if (net.num_steps > 0) |
| | | { |
| | | int batch_num = get_current_batch(net); |
| | | int i; |
| | | for (i = 0; i < net.num_steps; ++i) { |
| | | if (net.steps[i] > batch_num) break; |
| | | sequence_subdivisions *= net.seq_scales[i]; |
| | | } |
| | | } |
| | | if (sequence_subdivisions < 1) sequence_subdivisions = 1; |
| | | if (sequence_subdivisions > net.subdivisions) sequence_subdivisions = net.subdivisions; |
| | | return sequence_subdivisions; |
| | | } |
| | | |
| | | int get_sequence_value(network net) |
| | | { |
| | | int sequence = 1; |
| | | if (net.sequential_subdivisions != 0) sequence = net.subdivisions / net.sequential_subdivisions; |
| | | if (sequence < 1) sequence = 1; |
| | | return sequence; |
| | | } |
| | | |
| | | float get_current_rate(network net) |
| | | { |
| | | int batch_num = get_current_batch(net); |
| | | int i; |
| | | float rate; |
| | | if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power); |
| | | switch (net.policy) { |
| | | case CONSTANT: |
| | | return net.learning_rate; |
| | | case STEP: |
| | | return net.learning_rate * pow(net.scale, batch_num/net.step); |
| | | case STEPS: |
| | | rate = net.learning_rate; |
| | | for(i = 0; i < net.num_steps; ++i){ |
| | | if(net.steps[i] > batch_num) return rate; |
| | | rate *= net.scales[i]; |
| | | //if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net); |
| | | } |
| | | return rate; |
| | | case EXP: |
| | | return net.learning_rate * pow(net.gamma, batch_num); |
| | | case POLY: |
| | | return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); |
| | | //if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power); |
| | | //return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); |
| | | case RANDOM: |
| | | return net.learning_rate * pow(rand_uniform(0,1), net.power); |
| | | case SIG: |
| | | return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step)))); |
| | | case SGDR: |
| | | { |
| | | int last_iteration_start = 0; |
| | | int cycle_size = net.batches_per_cycle; |
| | | while ((last_iteration_start + cycle_size) < batch_num) |
| | | { |
| | | last_iteration_start += cycle_size; |
| | | cycle_size *= net.batches_cycle_mult; |
| | | } |
| | | rate = net.learning_rate_min + |
| | | 0.5*(net.learning_rate - net.learning_rate_min) |
| | | * (1. + cos((float)(batch_num - last_iteration_start)*3.14159265 / cycle_size)); |
| | | |
| | | return rate; |
| | | } |
| | | default: |
| | | fprintf(stderr, "Policy is weird!\n"); |
| | | return net.learning_rate; |
| | | } |
| | | } |
| | | |
| | | char *get_layer_string(LAYER_TYPE a) |
| | | { |
| | | switch(a){ |
| | | case CONVOLUTIONAL: |
| | | return "convolutional"; |
| | | case ACTIVE: |
| | | return "activation"; |
| | | case LOCAL: |
| | | return "local"; |
| | | case DECONVOLUTIONAL: |
| | | return "deconvolutional"; |
| | | case CONNECTED: |
| | | return "connected"; |
| | | case RNN: |
| | | return "rnn"; |
| | | case GRU: |
| | | return "gru"; |
| | | case LSTM: |
| | | return "lstm"; |
| | | case CRNN: |
| | | return "crnn"; |
| | | case MAXPOOL: |
| | | return "maxpool"; |
| | | case REORG: |
| | | return "reorg"; |
| | | case AVGPOOL: |
| | | return "avgpool"; |
| | | case SOFTMAX: |
| | | return "softmax"; |
| | | case DETECTION: |
| | | return "detection"; |
| | | case REGION: |
| | | return "region"; |
| | | case YOLO: |
| | | return "yolo"; |
| | | case GAUSSIAN_YOLO: |
| | | return "Gaussian_yolo"; |
| | | case DROPOUT: |
| | | return "dropout"; |
| | | case CROP: |
| | | return "crop"; |
| | | case COST: |
| | | return "cost"; |
| | | case ROUTE: |
| | | return "route"; |
| | | case SHORTCUT: |
| | | return "shortcut"; |
| | | case SCALE_CHANNELS: |
| | | return "scale_channels"; |
| | | case SAM: |
| | | return "sam"; |
| | | case NORMALIZATION: |
| | | return "normalization"; |
| | | case BATCHNORM: |
| | | return "batchnorm"; |
| | | default: |
| | | break; |
| | | } |
| | | return "none"; |
| | | } |
| | | |
| | | network make_network(int n) |
| | | { |
| | | network net = {0}; |
| | | net.n = n; |
| | | net.layers = (layer*)xcalloc(net.n, sizeof(layer)); |
| | | net.seen = (uint64_t*)xcalloc(1, sizeof(uint64_t)); |
| | | net.cuda_graph_ready = (int*)xcalloc(1, sizeof(int)); |
| | | net.badlabels_reject_threshold = (float*)xcalloc(1, sizeof(float)); |
| | | net.delta_rolling_max = (float*)xcalloc(1, sizeof(float)); |
| | | net.delta_rolling_avg = (float*)xcalloc(1, sizeof(float)); |
| | | net.delta_rolling_std = (float*)xcalloc(1, sizeof(float)); |
| | | net.cur_iteration = (int*)xcalloc(1, sizeof(int)); |
| | | net.total_bbox = (int*)xcalloc(1, sizeof(int)); |
| | | net.rewritten_bbox = (int*)xcalloc(1, sizeof(int)); |
| | | *net.rewritten_bbox = *net.total_bbox = 0; |
| | | #ifdef GPU |
| | | net.input_gpu = (float**)xcalloc(1, sizeof(float*)); |
| | | net.truth_gpu = (float**)xcalloc(1, sizeof(float*)); |
| | | |
| | | net.input16_gpu = (float**)xcalloc(1, sizeof(float*)); |
| | | net.output16_gpu = (float**)xcalloc(1, sizeof(float*)); |
| | | net.max_input16_size = (size_t*)xcalloc(1, sizeof(size_t)); |
| | | net.max_output16_size = (size_t*)xcalloc(1, sizeof(size_t)); |
| | | #endif |
| | | return net; |
| | | } |
| | | |
| | | void forward_network(network net, network_state state) |
| | | { |
| | | state.workspace = net.workspace; |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | state.index = i; |
| | | layer l = net.layers[i]; |
| | | if(l.delta && state.train){ |
| | | scal_cpu(l.outputs * l.batch, 0, l.delta, 1); |
| | | } |
| | | //double time = get_time_point(); |
| | | l.forward(l, state); |
| | | //printf("%d - Predicted in %lf milli-seconds.\n", i, ((double)get_time_point() - time) / 1000); |
| | | state.input = l.output; |
| | | |
| | | /* |
| | | float avg_val = 0; |
| | | int k; |
| | | for (k = 0; k < l.outputs; ++k) avg_val += l.output[k]; |
| | | printf(" i: %d - avg_val = %f \n", i, avg_val / l.outputs); |
| | | */ |
| | | } |
| | | } |
| | | |
| | | void update_network(network net) |
| | | { |
| | | int i; |
| | | int update_batch = net.batch*net.subdivisions; |
| | | float rate = get_current_rate(net); |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.update){ |
| | | l.update(l, update_batch, rate, net.momentum, net.decay); |
| | | } |
| | | } |
| | | } |
| | | |
| | | float *get_network_output(network net) |
| | | { |
| | | #ifdef GPU |
| | | if (gpu_index >= 0) return get_network_output_gpu(net); |
| | | #endif |
| | | int i; |
| | | for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; |
| | | return net.layers[i].output; |
| | | } |
| | | |
| | | float get_network_cost(network net) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | int count = 0; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.layers[i].cost){ |
| | | sum += net.layers[i].cost[0]; |
| | | ++count; |
| | | } |
| | | } |
| | | return sum/count; |
| | | } |
| | | |
| | | int get_predicted_class_network(network net) |
| | | { |
| | | float *out = get_network_output(net); |
| | | int k = get_network_output_size(net); |
| | | return max_index(out, k); |
| | | } |
| | | |
| | | void backward_network(network net, network_state state) |
| | | { |
| | | int i; |
| | | float *original_input = state.input; |
| | | float *original_delta = state.delta; |
| | | state.workspace = net.workspace; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | state.index = i; |
| | | if(i == 0){ |
| | | state.input = original_input; |
| | | state.delta = original_delta; |
| | | }else{ |
| | | layer prev = net.layers[i-1]; |
| | | state.input = prev.output; |
| | | state.delta = prev.delta; |
| | | } |
| | | layer l = net.layers[i]; |
| | | if (l.stopbackward) break; |
| | | if (l.onlyforward) continue; |
| | | l.backward(l, state); |
| | | } |
| | | } |
| | | |
| | | float train_network_datum(network net, float *x, float *y) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); |
| | | #endif |
| | | network_state state={0}; |
| | | *net.seen += net.batch; |
| | | state.index = 0; |
| | | state.net = net; |
| | | state.input = x; |
| | | state.delta = 0; |
| | | state.truth = y; |
| | | state.train = 1; |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | float error = get_network_cost(net); |
| | | //if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net); |
| | | if(*(state.net.total_bbox) > 0) |
| | | fprintf(stderr, " total_bbox = %d, rewritten_bbox = %f %% \n", *(state.net.total_bbox), 100 * (float)*(state.net.rewritten_bbox) / *(state.net.total_bbox)); |
| | | return error; |
| | | } |
| | | |
| | | float train_network_sgd(network net, data d, int n) |
| | | { |
| | | int batch = net.batch; |
| | | float* X = (float*)xcalloc(batch * d.X.cols, sizeof(float)); |
| | | float* y = (float*)xcalloc(batch * d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_random_batch(d, batch, X, y); |
| | | net.current_subdivision = i; |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | } |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | float train_network(network net, data d) |
| | | { |
| | | return train_network_waitkey(net, d, 0); |
| | | } |
| | | |
| | | float train_network_waitkey(network net, data d, int wait_key) |
| | | { |
| | | assert(d.X.rows % net.batch == 0); |
| | | int batch = net.batch; |
| | | int n = d.X.rows / batch; |
| | | float* X = (float*)xcalloc(batch * d.X.cols, sizeof(float)); |
| | | float* y = (float*)xcalloc(batch * d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_next_batch(d, batch, i*batch, X, y); |
| | | net.current_subdivision = i; |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | if(wait_key) wait_key_cv(5); |
| | | } |
| | | (*net.cur_iteration) += 1; |
| | | #ifdef GPU |
| | | update_network_gpu(net); |
| | | #else // GPU |
| | | update_network(net); |
| | | #endif // GPU |
| | | |
| | | int ema_start_point = net.max_batches / 2; |
| | | |
| | | if (net.ema_alpha && (*net.cur_iteration) >= ema_start_point) |
| | | { |
| | | int ema_period = (net.max_batches - ema_start_point - 1000) * (1.0 - net.ema_alpha); |
| | | int ema_apply_point = net.max_batches - 1000; |
| | | |
| | | if (!is_ema_initialized(net)) |
| | | { |
| | | ema_update(net, 0); // init EMA |
| | | printf(" EMA initialization \n"); |
| | | } |
| | | |
| | | if ((*net.cur_iteration) == ema_apply_point) |
| | | { |
| | | ema_apply(net); // apply EMA (BN rolling mean/var recalculation is required) |
| | | printf(" ema_apply() \n"); |
| | | } |
| | | else |
| | | if ((*net.cur_iteration) < ema_apply_point)// && (*net.cur_iteration) % ema_period == 0) |
| | | { |
| | | ema_update(net, net.ema_alpha); // update EMA |
| | | printf(" ema_update(), ema_alpha = %f \n", net.ema_alpha); |
| | | } |
| | | } |
| | | |
| | | |
| | | int reject_stop_point = net.max_batches*3/4; |
| | | |
| | | if ((*net.cur_iteration) < reject_stop_point && |
| | | net.weights_reject_freq && |
| | | (*net.cur_iteration) % net.weights_reject_freq == 0) |
| | | { |
| | | float sim_threshold = 0.4; |
| | | reject_similar_weights(net, sim_threshold); |
| | | } |
| | | |
| | | |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | |
| | | float train_network_batch(network net, data d, int n) |
| | | { |
| | | int i,j; |
| | | network_state state={0}; |
| | | state.index = 0; |
| | | state.net = net; |
| | | state.train = 1; |
| | | state.delta = 0; |
| | | float sum = 0; |
| | | int batch = 2; |
| | | for(i = 0; i < n; ++i){ |
| | | for(j = 0; j < batch; ++j){ |
| | | int index = random_gen()%d.X.rows; |
| | | state.input = d.X.vals[index]; |
| | | state.truth = d.y.vals[index]; |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | sum += get_network_cost(net); |
| | | } |
| | | update_network(net); |
| | | } |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | int recalculate_workspace_size(network *net) |
| | | { |
| | | #ifdef GPU |
| | | cuda_set_device(net->gpu_index); |
| | | if (gpu_index >= 0) cuda_free(net->workspace); |
| | | #endif |
| | | int i; |
| | | size_t workspace_size = 0; |
| | | for (i = 0; i < net->n; ++i) { |
| | | layer l = net->layers[i]; |
| | | //printf(" %d: layer = %d,", i, l.type); |
| | | if (l.type == CONVOLUTIONAL) { |
| | | l.workspace_size = get_convolutional_workspace_size(l); |
| | | } |
| | | else if (l.type == CONNECTED) { |
| | | l.workspace_size = get_connected_workspace_size(l); |
| | | } |
| | | if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; |
| | | net->layers[i] = l; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | if (gpu_index >= 0) { |
| | | printf("\n try to allocate additional workspace_size = %1.2f MB \n", (float)workspace_size / 1000000); |
| | | net->workspace = cuda_make_array(0, workspace_size / sizeof(float) + 1); |
| | | printf(" CUDA allocate done! \n"); |
| | | } |
| | | else { |
| | | free(net->workspace); |
| | | net->workspace = (float*)xcalloc(1, workspace_size); |
| | | } |
| | | #else |
| | | free(net->workspace); |
| | | net->workspace = (float*)xcalloc(1, workspace_size); |
| | | #endif |
| | | //fprintf(stderr, " Done!\n"); |
| | | return 0; |
| | | } |
| | | |
| | | void set_batch_network(network *net, int b) |
| | | { |
| | | net->batch = b; |
| | | int i; |
| | | for(i = 0; i < net->n; ++i){ |
| | | net->layers[i].batch = b; |
| | | |
| | | #ifdef CUDNN |
| | | if(net->layers[i].type == CONVOLUTIONAL){ |
| | | cudnn_convolutional_setup(net->layers + i, cudnn_fastest, 0); |
| | | } |
| | | else if (net->layers[i].type == MAXPOOL) { |
| | | cudnn_maxpool_setup(net->layers + i); |
| | | } |
| | | #endif |
| | | |
| | | } |
| | | recalculate_workspace_size(net); // recalculate workspace size |
| | | } |
| | | |
| | | int resize_network(network *net, int w, int h) |
| | | { |
| | | #ifdef GPU |
| | | cuda_set_device(net->gpu_index); |
| | | if(gpu_index >= 0){ |
| | | cuda_free(net->workspace); |
| | | if (net->input_gpu) { |
| | | cuda_free(*net->input_gpu); |
| | | *net->input_gpu = 0; |
| | | cuda_free(*net->truth_gpu); |
| | | *net->truth_gpu = 0; |
| | | } |
| | | |
| | | if (net->input_state_gpu) cuda_free(net->input_state_gpu); |
| | | if (net->input_pinned_cpu) { |
| | | if (net->input_pinned_cpu_flag) cudaFreeHost(net->input_pinned_cpu); |
| | | else free(net->input_pinned_cpu); |
| | | } |
| | | } |
| | | #endif |
| | | int i; |
| | | //if(w == net->w && h == net->h) return 0; |
| | | net->w = w; |
| | | net->h = h; |
| | | int inputs = 0; |
| | | size_t workspace_size = 0; |
| | | //fprintf(stderr, "Resizing to %d x %d...\n", w, h); |
| | | //fflush(stderr); |
| | | for (i = 0; i < net->n; ++i){ |
| | | layer l = net->layers[i]; |
| | | //printf(" (resize %d: layer = %d) , ", i, l.type); |
| | | if(l.type == CONVOLUTIONAL){ |
| | | resize_convolutional_layer(&l, w, h); |
| | | } |
| | | else if (l.type == CRNN) { |
| | | resize_crnn_layer(&l, w, h); |
| | | }else if (l.type == CONV_LSTM) { |
| | | resize_conv_lstm_layer(&l, w, h); |
| | | }else if(l.type == CROP){ |
| | | resize_crop_layer(&l, w, h); |
| | | }else if(l.type == MAXPOOL){ |
| | | resize_maxpool_layer(&l, w, h); |
| | | }else if (l.type == LOCAL_AVGPOOL) { |
| | | resize_maxpool_layer(&l, w, h); |
| | | }else if (l.type == BATCHNORM) { |
| | | resize_batchnorm_layer(&l, w, h); |
| | | }else if(l.type == REGION){ |
| | | resize_region_layer(&l, w, h); |
| | | }else if (l.type == YOLO) { |
| | | resize_yolo_layer(&l, w, h); |
| | | }else if (l.type == GAUSSIAN_YOLO) { |
| | | resize_gaussian_yolo_layer(&l, w, h); |
| | | }else if(l.type == ROUTE){ |
| | | resize_route_layer(&l, net); |
| | | }else if (l.type == SHORTCUT) { |
| | | resize_shortcut_layer(&l, w, h, net); |
| | | }else if (l.type == SCALE_CHANNELS) { |
| | | resize_scale_channels_layer(&l, net); |
| | | }else if (l.type == SAM) { |
| | | resize_sam_layer(&l, w, h); |
| | | }else if (l.type == DROPOUT) { |
| | | resize_dropout_layer(&l, inputs); |
| | | l.out_w = l.w = w; |
| | | l.out_h = l.h = h; |
| | | l.output = net->layers[i - 1].output; |
| | | l.delta = net->layers[i - 1].delta; |
| | | #ifdef GPU |
| | | l.output_gpu = net->layers[i-1].output_gpu; |
| | | l.delta_gpu = net->layers[i-1].delta_gpu; |
| | | #endif |
| | | }else if (l.type == UPSAMPLE) { |
| | | resize_upsample_layer(&l, w, h); |
| | | }else if(l.type == REORG){ |
| | | resize_reorg_layer(&l, w, h); |
| | | } else if (l.type == REORG_OLD) { |
| | | resize_reorg_old_layer(&l, w, h); |
| | | }else if(l.type == AVGPOOL){ |
| | | resize_avgpool_layer(&l, w, h); |
| | | }else if(l.type == NORMALIZATION){ |
| | | resize_normalization_layer(&l, w, h); |
| | | }else if(l.type == COST){ |
| | | resize_cost_layer(&l, inputs); |
| | | }else{ |
| | | fprintf(stderr, "Resizing type %d \n", (int)l.type); |
| | | error("Cannot resize this type of layer"); |
| | | } |
| | | if(l.workspace_size > workspace_size) workspace_size = l.workspace_size; |
| | | inputs = l.outputs; |
| | | net->layers[i] = l; |
| | | //if(l.type != DROPOUT) |
| | | { |
| | | w = l.out_w; |
| | | h = l.out_h; |
| | | } |
| | | //if(l.type == AVGPOOL) break; |
| | | } |
| | | #ifdef GPU |
| | | const int size = get_network_input_size(*net) * net->batch; |
| | | if(gpu_index >= 0){ |
| | | printf(" try to allocate additional workspace_size = %1.2f MB \n", (float)workspace_size / 1000000); |
| | | net->workspace = cuda_make_array(0, workspace_size/sizeof(float) + 1); |
| | | net->input_state_gpu = cuda_make_array(0, size); |
| | | if (cudaSuccess == cudaHostAlloc(&net->input_pinned_cpu, size * sizeof(float), cudaHostRegisterMapped)) |
| | | net->input_pinned_cpu_flag = 1; |
| | | else { |
| | | cudaGetLastError(); // reset CUDA-error |
| | | net->input_pinned_cpu = (float*)xcalloc(size, sizeof(float)); |
| | | net->input_pinned_cpu_flag = 0; |
| | | } |
| | | printf(" CUDA allocate done! \n"); |
| | | }else { |
| | | free(net->workspace); |
| | | net->workspace = (float*)xcalloc(1, workspace_size); |
| | | if(!net->input_pinned_cpu_flag) |
| | | net->input_pinned_cpu = (float*)xrealloc(net->input_pinned_cpu, size * sizeof(float)); |
| | | } |
| | | #else |
| | | free(net->workspace); |
| | | net->workspace = (float*)xcalloc(1, workspace_size); |
| | | #endif |
| | | //fprintf(stderr, " Done!\n"); |
| | | return 0; |
| | | } |
| | | |
| | | int get_network_output_size(network net) |
| | | { |
| | | int i; |
| | | for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; |
| | | return net.layers[i].outputs; |
| | | } |
| | | |
| | | int get_network_input_size(network net) |
| | | { |
| | | return net.layers[0].inputs; |
| | | } |
| | | |
| | | detection_layer get_network_detection_layer(network net) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.layers[i].type == DETECTION){ |
| | | return net.layers[i]; |
| | | } |
| | | } |
| | | fprintf(stderr, "Detection layer not found!!\n"); |
| | | detection_layer l = { (LAYER_TYPE)0 }; |
| | | return l; |
| | | } |
| | | |
| | | image get_network_image_layer(network net, int i) |
| | | { |
| | | layer l = net.layers[i]; |
| | | if (l.out_w && l.out_h && l.out_c){ |
| | | return float_to_image(l.out_w, l.out_h, l.out_c, l.output); |
| | | } |
| | | image def = {0}; |
| | | return def; |
| | | } |
| | | |
| | | layer* get_network_layer(network* net, int i) |
| | | { |
| | | return net->layers + i; |
| | | } |
| | | |
| | | image get_network_image(network net) |
| | | { |
| | | int i; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | image m = get_network_image_layer(net, i); |
| | | if(m.h != 0) return m; |
| | | } |
| | | image def = {0}; |
| | | return def; |
| | | } |
| | | |
| | | void visualize_network(network net) |
| | | { |
| | | image *prev = 0; |
| | | int i; |
| | | char buff[256]; |
| | | for(i = 0; i < net.n; ++i){ |
| | | sprintf(buff, "Layer %d", i); |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | prev = visualize_convolutional_layer(l, buff, prev); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void top_predictions(network net, int k, int *index) |
| | | { |
| | | int size = get_network_output_size(net); |
| | | float *out = get_network_output(net); |
| | | top_k(out, size, k, index); |
| | | } |
| | | |
| | | // A version of network_predict that uses a pointer for the network |
| | | // struct to make the python binding work properly. |
| | | float *network_predict_ptr(network *net, float *input) |
| | | { |
| | | return network_predict(*net, input); |
| | | } |
| | | |
| | | float *network_predict(network net, float *input) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return network_predict_gpu(net, input); |
| | | #endif |
| | | |
| | | network_state state = {0}; |
| | | state.net = net; |
| | | state.index = 0; |
| | | state.input = input; |
| | | state.truth = 0; |
| | | state.train = 0; |
| | | state.delta = 0; |
| | | forward_network(net, state); |
| | | float *out = get_network_output(net); |
| | | return out; |
| | | } |
| | | |
| | | int num_detections(network *net, float thresh) |
| | | { |
| | | int i; |
| | | int s = 0; |
| | | for (i = 0; i < net->n; ++i) { |
| | | layer l = net->layers[i]; |
| | | if (l.type == YOLO) { |
| | | s += yolo_num_detections(l, thresh); |
| | | } |
| | | if (l.type == GAUSSIAN_YOLO) { |
| | | s += gaussian_yolo_num_detections(l, thresh); |
| | | } |
| | | if (l.type == DETECTION || l.type == REGION) { |
| | | s += l.w*l.h*l.n; |
| | | } |
| | | } |
| | | return s; |
| | | } |
| | | |
| | | int num_detections_batch(network *net, float thresh, int batch) |
| | | { |
| | | int i; |
| | | int s = 0; |
| | | for (i = 0; i < net->n; ++i) { |
| | | layer l = net->layers[i]; |
| | | if (l.type == YOLO) { |
| | | s += yolo_num_detections_batch(l, thresh, batch); |
| | | } |
| | | if (l.type == DETECTION || l.type == REGION) { |
| | | s += l.w*l.h*l.n; |
| | | } |
| | | } |
| | | return s; |
| | | } |
| | | |
| | | detection *make_network_boxes(network *net, float thresh, int *num) |
| | | { |
| | | int i; |
| | | layer l = net->layers[net->n - 1]; |
| | | for (i = 0; i < net->n; ++i) { |
| | | layer l_tmp = net->layers[i]; |
| | | if (l_tmp.type == YOLO || l_tmp.type == GAUSSIAN_YOLO || l_tmp.type == DETECTION || l_tmp.type == REGION) { |
| | | l = l_tmp; |
| | | break; |
| | | } |
| | | } |
| | | |
| | | int nboxes = num_detections(net, thresh); |
| | | if (num) *num = nboxes; |
| | | detection* dets = (detection*)xcalloc(nboxes, sizeof(detection)); |
| | | for (i = 0; i < nboxes; ++i) { |
| | | dets[i].prob = (float*)xcalloc(l.classes, sizeof(float)); |
| | | // tx,ty,tw,th uncertainty |
| | | if(l.type == GAUSSIAN_YOLO) dets[i].uc = (float*)xcalloc(4, sizeof(float)); // Gaussian_YOLOv3 |
| | | else dets[i].uc = NULL; |
| | | |
| | | if (l.coords > 4) dets[i].mask = (float*)xcalloc(l.coords - 4, sizeof(float)); |
| | | else dets[i].mask = NULL; |
| | | |
| | | if(l.embedding_output) dets[i].embeddings = (float*)xcalloc(l.embedding_size, sizeof(float)); |
| | | else dets[i].embeddings = NULL; |
| | | dets[i].embedding_size = l.embedding_size; |
| | | } |
| | | return dets; |
| | | } |
| | | |
| | | detection *make_network_boxes_batch(network *net, float thresh, int *num, int batch) |
| | | { |
| | | int i; |
| | | layer l = net->layers[net->n - 1]; |
| | | for (i = 0; i < net->n; ++i) { |
| | | layer l_tmp = net->layers[i]; |
| | | if (l_tmp.type == YOLO || l_tmp.type == GAUSSIAN_YOLO || l_tmp.type == DETECTION || l_tmp.type == REGION) { |
| | | l = l_tmp; |
| | | break; |
| | | } |
| | | } |
| | | |
| | | int nboxes = num_detections_batch(net, thresh, batch); |
| | | assert(num != NULL); |
| | | *num = nboxes; |
| | | detection* dets = (detection*)calloc(nboxes, sizeof(detection)); |
| | | for (i = 0; i < nboxes; ++i) { |
| | | dets[i].prob = (float*)calloc(l.classes, sizeof(float)); |
| | | // tx,ty,tw,th uncertainty |
| | | if (l.type == GAUSSIAN_YOLO) dets[i].uc = (float*)xcalloc(4, sizeof(float)); // Gaussian_YOLOv3 |
| | | else dets[i].uc = NULL; |
| | | |
| | | if (l.coords > 4) dets[i].mask = (float*)xcalloc(l.coords - 4, sizeof(float)); |
| | | else dets[i].mask = NULL; |
| | | |
| | | if (l.embedding_output) dets[i].embeddings = (float*)xcalloc(l.embedding_size, sizeof(float)); |
| | | else dets[i].embeddings = NULL; |
| | | dets[i].embedding_size = l.embedding_size; |
| | | } |
| | | return dets; |
| | | } |
| | | |
| | | void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter) |
| | | { |
| | | box* boxes = (box*)xcalloc(l.w * l.h * l.n, sizeof(box)); |
| | | float** probs = (float**)xcalloc(l.w * l.h * l.n, sizeof(float*)); |
| | | int i, j; |
| | | for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float*)xcalloc(l.classes, sizeof(float)); |
| | | get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map); |
| | | for (j = 0; j < l.w*l.h*l.n; ++j) { |
| | | dets[j].classes = l.classes; |
| | | dets[j].bbox = boxes[j]; |
| | | dets[j].objectness = 1; |
| | | for (i = 0; i < l.classes; ++i) { |
| | | dets[j].prob[i] = probs[j][i]; |
| | | } |
| | | } |
| | | |
| | | free(boxes); |
| | | free_ptrs((void **)probs, l.w*l.h*l.n); |
| | | |
| | | //correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative); |
| | | correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter); |
| | | } |
| | | |
| | | void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter) |
| | | { |
| | | int prev_classes = -1; |
| | | int j; |
| | | for (j = 0; j < net->n; ++j) { |
| | | layer l = net->layers[j]; |
| | | if (l.type == YOLO) { |
| | | int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter); |
| | | dets += count; |
| | | if (prev_classes < 0) prev_classes = l.classes; |
| | | else if (prev_classes != l.classes) { |
| | | printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n", |
| | | prev_classes, l.classes); |
| | | } |
| | | } |
| | | if (l.type == GAUSSIAN_YOLO) { |
| | | int count = get_gaussian_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter); |
| | | dets += count; |
| | | } |
| | | if (l.type == REGION) { |
| | | custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter); |
| | | //get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets); |
| | | dets += l.w*l.h*l.n; |
| | | } |
| | | if (l.type == DETECTION) { |
| | | get_detection_detections(l, w, h, thresh, dets); |
| | | dets += l.w*l.h*l.n; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void fill_network_boxes_batch(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter, int batch) |
| | | { |
| | | int prev_classes = -1; |
| | | int j; |
| | | for (j = 0; j < net->n; ++j) { |
| | | layer l = net->layers[j]; |
| | | if (l.type == YOLO) { |
| | | int count = get_yolo_detections_batch(l, w, h, net->w, net->h, thresh, map, relative, dets, letter, batch); |
| | | dets += count; |
| | | if (prev_classes < 0) prev_classes = l.classes; |
| | | else if (prev_classes != l.classes) { |
| | | printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n", |
| | | prev_classes, l.classes); |
| | | } |
| | | } |
| | | if (l.type == REGION) { |
| | | custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter); |
| | | //get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets); |
| | | dets += l.w*l.h*l.n; |
| | | } |
| | | if (l.type == DETECTION) { |
| | | get_detection_detections(l, w, h, thresh, dets); |
| | | dets += l.w*l.h*l.n; |
| | | } |
| | | } |
| | | } |
| | | |
| | | detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter) |
| | | { |
| | | detection *dets = make_network_boxes(net, thresh, num); |
| | | fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter); |
| | | return dets; |
| | | } |
| | | |
| | | void free_detections(detection *dets, int n) |
| | | { |
| | | int i; |
| | | for (i = 0; i < n; ++i) { |
| | | free(dets[i].prob); |
| | | if (dets[i].uc) free(dets[i].uc); |
| | | if (dets[i].mask) free(dets[i].mask); |
| | | if (dets[i].embeddings) free(dets[i].embeddings); |
| | | } |
| | | free(dets); |
| | | } |
| | | |
| | | void free_batch_detections(det_num_pair *det_num_pairs, int n) |
| | | { |
| | | int i; |
| | | for(i=0; i<n; ++i) |
| | | free_detections(det_num_pairs[i].dets, det_num_pairs[i].num); |
| | | free(det_num_pairs); |
| | | } |
| | | |
| | | // JSON format: |
| | | //{ |
| | | // "frame_id":8990, |
| | | // "objects":[ |
| | | // {"class_id":4, "name":"aeroplane", "relative coordinates":{"center_x":0.398831, "center_y":0.630203, "width":0.057455, "height":0.020396}, "confidence":0.793070}, |
| | | // {"class_id":14, "name":"bird", "relative coordinates":{"center_x":0.398831, "center_y":0.630203, "width":0.057455, "height":0.020396}, "confidence":0.265497} |
| | | // ] |
| | | //}, |
| | | |
| | | char *detection_to_json(detection *dets, int nboxes, int classes, char **names, long long int frame_id, char *filename) |
| | | { |
| | | const float thresh = 0.005; // function get_network_boxes() has already filtred dets by actual threshold |
| | | |
| | | char *send_buf = (char *)calloc(1024, sizeof(char)); |
| | | if (!send_buf) return 0; |
| | | if (filename) { |
| | | sprintf(send_buf, "{\n \"frame_id\":%lld, \n \"filename\":\"%s\", \n \"objects\": [ \n", frame_id, filename); |
| | | } |
| | | else { |
| | | sprintf(send_buf, "{\n \"frame_id\":%lld, \n \"objects\": [ \n", frame_id); |
| | | } |
| | | |
| | | int i, j; |
| | | int class_id = -1; |
| | | for (i = 0; i < nboxes; ++i) { |
| | | for (j = 0; j < classes; ++j) { |
| | | int show = strncmp(names[j], "dont_show", 9); |
| | | if (dets[i].prob[j] > thresh && show) |
| | | { |
| | | if (class_id != -1) strcat(send_buf, ", \n"); |
| | | class_id = j; |
| | | char *buf = (char *)calloc(2048, sizeof(char)); |
| | | if (!buf) return 0; |
| | | //sprintf(buf, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f}", |
| | | // image_id, j, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h, dets[i].prob[j]); |
| | | |
| | | sprintf(buf, " {\"class_id\":%d, \"name\":\"%s\", \"relative_coordinates\":{\"center_x\":%f, \"center_y\":%f, \"width\":%f, \"height\":%f}, \"confidence\":%f}", |
| | | j, names[j], dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h, dets[i].prob[j]); |
| | | |
| | | int send_buf_len = strlen(send_buf); |
| | | int buf_len = strlen(buf); |
| | | int total_len = send_buf_len + buf_len + 100; |
| | | send_buf = (char *)realloc(send_buf, total_len * sizeof(char)); |
| | | if (!send_buf) { |
| | | if (buf) free(buf); |
| | | return 0;// exit(-1); |
| | | } |
| | | strcat(send_buf, buf); |
| | | free(buf); |
| | | } |
| | | } |
| | | } |
| | | strcat(send_buf, "\n ] \n}"); |
| | | return send_buf; |
| | | } |
| | | |
| | | |
| | | float *network_predict_image(network *net, image im) |
| | | { |
| | | //image imr = letterbox_image(im, net->w, net->h); |
| | | float *p; |
| | | if(net->batch != 1) set_batch_network(net, 1); |
| | | if (im.w == net->w && im.h == net->h) { |
| | | // Input image is the same size as our net, predict on that image |
| | | p = network_predict(*net, im.data); |
| | | } |
| | | else { |
| | | // Need to resize image to the desired size for the net |
| | | image imr = resize_image(im, net->w, net->h); |
| | | p = network_predict(*net, imr.data); |
| | | free_image(imr); |
| | | } |
| | | return p; |
| | | } |
| | | |
| | | det_num_pair* network_predict_batch(network *net, image im, int batch_size, int w, int h, float thresh, float hier, int *map, int relative, int letter) |
| | | { |
| | | network_predict(*net, im.data); |
| | | det_num_pair *pdets = (struct det_num_pair *)calloc(batch_size, sizeof(det_num_pair)); |
| | | int num; |
| | | int batch; |
| | | for(batch=0; batch < batch_size; batch++){ |
| | | detection *dets = make_network_boxes_batch(net, thresh, &num, batch); |
| | | fill_network_boxes_batch(net, w, h, thresh, hier, map, relative, dets, letter, batch); |
| | | pdets[batch].num = num; |
| | | pdets[batch].dets = dets; |
| | | } |
| | | return pdets; |
| | | } |
| | | |
| | | float *network_predict_image_letterbox(network *net, image im) |
| | | { |
| | | //image imr = letterbox_image(im, net->w, net->h); |
| | | float *p; |
| | | if (net->batch != 1) set_batch_network(net, 1); |
| | | if (im.w == net->w && im.h == net->h) { |
| | | // Input image is the same size as our net, predict on that image |
| | | p = network_predict(*net, im.data); |
| | | } |
| | | else { |
| | | // Need to resize image to the desired size for the net |
| | | image imr = letterbox_image(im, net->w, net->h); |
| | | p = network_predict(*net, imr.data); |
| | | free_image(imr); |
| | | } |
| | | return p; |
| | | } |
| | | |
| | | int network_width(network *net) { return net->w; } |
| | | int network_height(network *net) { return net->h; } |
| | | |
| | | matrix network_predict_data_multi(network net, data test, int n) |
| | | { |
| | | int i,j,b,m; |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | float* X = (float*)xcalloc(net.batch * test.X.rows, sizeof(float)); |
| | | for(i = 0; i < test.X.rows; i += net.batch){ |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
| | | } |
| | | for(m = 0; m < n; ++m){ |
| | | float *out = network_predict(net, X); |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i+b][j] += out[j+b*k]/n; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | free(X); |
| | | return pred; |
| | | } |
| | | |
| | | matrix network_predict_data(network net, data test) |
| | | { |
| | | int i,j,b; |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | float* X = (float*)xcalloc(net.batch * test.X.cols, sizeof(float)); |
| | | for(i = 0; i < test.X.rows; i += net.batch){ |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
| | | } |
| | | float *out = network_predict(net, X); |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i+b][j] = out[j+b*k]; |
| | | } |
| | | } |
| | | } |
| | | free(X); |
| | | return pred; |
| | | } |
| | | |
| | | void print_network(network net) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < net.n; ++i){ |
| | | layer l = net.layers[i]; |
| | | float *output = l.output; |
| | | int n = l.outputs; |
| | | float mean = mean_array(output, n); |
| | | float vari = variance_array(output, n); |
| | | fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); |
| | | if(n > 100) n = 100; |
| | | for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]); |
| | | if(n == 100)fprintf(stderr,".....\n"); |
| | | fprintf(stderr, "\n"); |
| | | } |
| | | } |
| | | |
| | | void compare_networks(network n1, network n2, data test) |
| | | { |
| | | matrix g1 = network_predict_data(n1, test); |
| | | matrix g2 = network_predict_data(n2, test); |
| | | int i; |
| | | int a,b,c,d; |
| | | a = b = c = d = 0; |
| | | for(i = 0; i < g1.rows; ++i){ |
| | | int truth = max_index(test.y.vals[i], test.y.cols); |
| | | int p1 = max_index(g1.vals[i], g1.cols); |
| | | int p2 = max_index(g2.vals[i], g2.cols); |
| | | if(p1 == truth){ |
| | | if(p2 == truth) ++d; |
| | | else ++c; |
| | | }else{ |
| | | if(p2 == truth) ++b; |
| | | else ++a; |
| | | } |
| | | } |
| | | printf("%5d %5d\n%5d %5d\n", a, b, c, d); |
| | | float num = pow((abs(b - c) - 1.), 2.); |
| | | float den = b + c; |
| | | printf("%f\n", num/den); |
| | | } |
| | | |
| | | float network_accuracy(network net, data d) |
| | | { |
| | | matrix guess = network_predict_data(net, d); |
| | | float acc = matrix_topk_accuracy(d.y, guess,1); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | float *network_accuracies(network net, data d, int n) |
| | | { |
| | | static float acc[2]; |
| | | matrix guess = network_predict_data(net, d); |
| | | acc[0] = matrix_topk_accuracy(d.y, guess, 1); |
| | | acc[1] = matrix_topk_accuracy(d.y, guess, n); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | float network_accuracy_multi(network net, data d, int n) |
| | | { |
| | | matrix guess = network_predict_data_multi(net, d, n); |
| | | float acc = matrix_topk_accuracy(d.y, guess,1); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | void free_network_ptr(network* net) |
| | | { |
| | | free_network(*net); |
| | | } |
| | | |
| | | void free_network(network net) |
| | | { |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | free_layer(net.layers[i]); |
| | | } |
| | | free(net.layers); |
| | | |
| | | free(net.seq_scales); |
| | | free(net.scales); |
| | | free(net.steps); |
| | | free(net.seen); |
| | | free(net.cuda_graph_ready); |
| | | free(net.badlabels_reject_threshold); |
| | | free(net.delta_rolling_max); |
| | | free(net.delta_rolling_avg); |
| | | free(net.delta_rolling_std); |
| | | free(net.cur_iteration); |
| | | free(net.total_bbox); |
| | | free(net.rewritten_bbox); |
| | | |
| | | #ifdef GPU |
| | | if (gpu_index >= 0) cuda_free(net.workspace); |
| | | else free(net.workspace); |
| | | free_pinned_memory(); |
| | | if (net.input_state_gpu) cuda_free(net.input_state_gpu); |
| | | if (net.input_pinned_cpu) { // CPU |
| | | if (net.input_pinned_cpu_flag) cudaFreeHost(net.input_pinned_cpu); |
| | | else free(net.input_pinned_cpu); |
| | | } |
| | | if (*net.input_gpu) cuda_free(*net.input_gpu); |
| | | if (*net.truth_gpu) cuda_free(*net.truth_gpu); |
| | | if (net.input_gpu) free(net.input_gpu); |
| | | if (net.truth_gpu) free(net.truth_gpu); |
| | | |
| | | if (*net.input16_gpu) cuda_free(*net.input16_gpu); |
| | | if (*net.output16_gpu) cuda_free(*net.output16_gpu); |
| | | if (net.input16_gpu) free(net.input16_gpu); |
| | | if (net.output16_gpu) free(net.output16_gpu); |
| | | if (net.max_input16_size) free(net.max_input16_size); |
| | | if (net.max_output16_size) free(net.max_output16_size); |
| | | #else |
| | | free(net.workspace); |
| | | #endif |
| | | } |
| | | |
| | | static float relu(float src) { |
| | | if (src > 0) return src; |
| | | return 0; |
| | | } |
| | | |
| | | static float lrelu(float src) { |
| | | const float eps = 0.001; |
| | | if (src > eps) return src; |
| | | return eps; |
| | | } |
| | | |
| | | void fuse_conv_batchnorm(network net) |
| | | { |
| | | int j; |
| | | for (j = 0; j < net.n; ++j) { |
| | | layer *l = &net.layers[j]; |
| | | |
| | | if (l->type == CONVOLUTIONAL) { |
| | | //printf(" Merges Convolutional-%d and batch_norm \n", j); |
| | | |
| | | if (l->share_layer != NULL) { |
| | | l->batch_normalize = 0; |
| | | } |
| | | |
| | | if (l->batch_normalize) { |
| | | int f; |
| | | for (f = 0; f < l->n; ++f) |
| | | { |
| | | l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f] + .00001)); |
| | | |
| | | double precomputed = l->scales[f] / (sqrt((double)l->rolling_variance[f] + .00001)); |
| | | |
| | | const size_t filter_size = l->size*l->size*l->c / l->groups; |
| | | int i; |
| | | for (i = 0; i < filter_size; ++i) { |
| | | int w_index = f*filter_size + i; |
| | | |
| | | l->weights[w_index] *= precomputed; |
| | | } |
| | | } |
| | | |
| | | free_convolutional_batchnorm(l); |
| | | l->batch_normalize = 0; |
| | | #ifdef GPU |
| | | if (gpu_index >= 0) { |
| | | push_convolutional_layer(*l); |
| | | } |
| | | #endif |
| | | } |
| | | } |
| | | else if (l->type == SHORTCUT && l->weights && l->weights_normalization) |
| | | { |
| | | if (l->nweights > 0) { |
| | | //cuda_pull_array(l.weights_gpu, l.weights, l.nweights); |
| | | int i; |
| | | for (i = 0; i < l->nweights; ++i) printf(" w = %f,", l->weights[i]); |
| | | printf(" l->nweights = %d, j = %d \n", l->nweights, j); |
| | | } |
| | | |
| | | // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w) |
| | | const int layer_step = l->nweights / (l->n + 1); // 1 or l.c or (l.c * l.h * l.w) |
| | | |
| | | int chan, i; |
| | | for (chan = 0; chan < layer_step; ++chan) |
| | | { |
| | | float sum = 1, max_val = -FLT_MAX; |
| | | |
| | | if (l->weights_normalization == SOFTMAX_NORMALIZATION) { |
| | | for (i = 0; i < (l->n + 1); ++i) { |
| | | int w_index = chan + i * layer_step; |
| | | float w = l->weights[w_index]; |
| | | if (max_val < w) max_val = w; |
| | | } |
| | | } |
| | | |
| | | const float eps = 0.0001; |
| | | sum = eps; |
| | | |
| | | for (i = 0; i < (l->n + 1); ++i) { |
| | | int w_index = chan + i * layer_step; |
| | | float w = l->weights[w_index]; |
| | | if (l->weights_normalization == RELU_NORMALIZATION) sum += lrelu(w); |
| | | else if (l->weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val); |
| | | } |
| | | |
| | | for (i = 0; i < (l->n + 1); ++i) { |
| | | int w_index = chan + i * layer_step; |
| | | float w = l->weights[w_index]; |
| | | if (l->weights_normalization == RELU_NORMALIZATION) w = lrelu(w) / sum; |
| | | else if (l->weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; |
| | | l->weights[w_index] = w; |
| | | } |
| | | } |
| | | |
| | | l->weights_normalization = NO_NORMALIZATION; |
| | | |
| | | #ifdef GPU |
| | | if (gpu_index >= 0) { |
| | | push_shortcut_layer(*l); |
| | | } |
| | | #endif |
| | | } |
| | | else { |
| | | //printf(" Fusion skip layer type: %d \n", l->type); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void forward_blank_layer(layer l, network_state state) {} |
| | | |
| | | void calculate_binary_weights(network net) |
| | | { |
| | | int j; |
| | | for (j = 0; j < net.n; ++j) { |
| | | layer *l = &net.layers[j]; |
| | | |
| | | if (l->type == CONVOLUTIONAL) { |
| | | //printf(" Merges Convolutional-%d and batch_norm \n", j); |
| | | |
| | | if (l->xnor) { |
| | | //printf("\n %d \n", j); |
| | | //l->lda_align = 256; // 256bit for AVX2 // set in make_convolutional_layer() |
| | | //if (l->size*l->size*l->c >= 2048) l->lda_align = 512; |
| | | |
| | | binary_align_weights(l); |
| | | |
| | | if (net.layers[j].use_bin_output) { |
| | | l->activation = LINEAR; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | // fuse conv_xnor + shortcut -> conv_xnor |
| | | if ((j + 1) < net.n && net.layers[j].type == CONVOLUTIONAL) { |
| | | layer *sc = &net.layers[j + 1]; |
| | | if (sc->type == SHORTCUT && sc->w == sc->out_w && sc->h == sc->out_h && sc->c == sc->out_c) |
| | | { |
| | | l->bin_conv_shortcut_in_gpu = net.layers[net.layers[j + 1].index].output_gpu; |
| | | l->bin_conv_shortcut_out_gpu = net.layers[j + 1].output_gpu; |
| | | |
| | | net.layers[j + 1].type = BLANK; |
| | | net.layers[j + 1].forward_gpu = forward_blank_layer; |
| | | } |
| | | } |
| | | #endif // GPU |
| | | } |
| | | } |
| | | } |
| | | //printf("\n calculate_binary_weights Done! \n"); |
| | | |
| | | } |
| | | |
| | | void copy_cudnn_descriptors(layer src, layer *dst) |
| | | { |
| | | #ifdef CUDNN |
| | | dst->normTensorDesc = src.normTensorDesc; |
| | | dst->normDstTensorDesc = src.normDstTensorDesc; |
| | | dst->normDstTensorDescF16 = src.normDstTensorDescF16; |
| | | |
| | | dst->srcTensorDesc = src.srcTensorDesc; |
| | | dst->dstTensorDesc = src.dstTensorDesc; |
| | | |
| | | dst->srcTensorDesc16 = src.srcTensorDesc16; |
| | | dst->dstTensorDesc16 = src.dstTensorDesc16; |
| | | #endif // CUDNN |
| | | } |
| | | |
| | | void copy_weights_net(network net_train, network *net_map) |
| | | { |
| | | int k; |
| | | for (k = 0; k < net_train.n; ++k) { |
| | | layer *l = &(net_train.layers[k]); |
| | | layer tmp_layer; |
| | | copy_cudnn_descriptors(net_map->layers[k], &tmp_layer); |
| | | net_map->layers[k] = net_train.layers[k]; |
| | | copy_cudnn_descriptors(tmp_layer, &net_map->layers[k]); |
| | | |
| | | if (l->type == CRNN) { |
| | | layer tmp_input_layer, tmp_self_layer, tmp_output_layer; |
| | | copy_cudnn_descriptors(*net_map->layers[k].input_layer, &tmp_input_layer); |
| | | copy_cudnn_descriptors(*net_map->layers[k].self_layer, &tmp_self_layer); |
| | | copy_cudnn_descriptors(*net_map->layers[k].output_layer, &tmp_output_layer); |
| | | net_map->layers[k].input_layer = net_train.layers[k].input_layer; |
| | | net_map->layers[k].self_layer = net_train.layers[k].self_layer; |
| | | net_map->layers[k].output_layer = net_train.layers[k].output_layer; |
| | | //net_map->layers[k].output_gpu = net_map->layers[k].output_layer->output_gpu; // already copied out of if() |
| | | |
| | | copy_cudnn_descriptors(tmp_input_layer, net_map->layers[k].input_layer); |
| | | copy_cudnn_descriptors(tmp_self_layer, net_map->layers[k].self_layer); |
| | | copy_cudnn_descriptors(tmp_output_layer, net_map->layers[k].output_layer); |
| | | } |
| | | else if(l->input_layer) // for AntiAliasing |
| | | { |
| | | layer tmp_input_layer; |
| | | copy_cudnn_descriptors(*net_map->layers[k].input_layer, &tmp_input_layer); |
| | | net_map->layers[k].input_layer = net_train.layers[k].input_layer; |
| | | copy_cudnn_descriptors(tmp_input_layer, net_map->layers[k].input_layer); |
| | | } |
| | | net_map->layers[k].batch = 1; |
| | | net_map->layers[k].steps = 1; |
| | | } |
| | | } |
| | | |
| | | |
| | | // combine Training and Validation networks |
| | | network combine_train_valid_networks(network net_train, network net_map) |
| | | { |
| | | network net_combined = make_network(net_train.n); |
| | | layer *old_layers = net_combined.layers; |
| | | net_combined = net_train; |
| | | net_combined.layers = old_layers; |
| | | net_combined.batch = 1; |
| | | |
| | | int k; |
| | | for (k = 0; k < net_train.n; ++k) { |
| | | layer *l = &(net_train.layers[k]); |
| | | net_combined.layers[k] = net_train.layers[k]; |
| | | net_combined.layers[k].batch = 1; |
| | | |
| | | if (l->type == CONVOLUTIONAL) { |
| | | #ifdef CUDNN |
| | | net_combined.layers[k].normTensorDesc = net_map.layers[k].normTensorDesc; |
| | | net_combined.layers[k].normDstTensorDesc = net_map.layers[k].normDstTensorDesc; |
| | | net_combined.layers[k].normDstTensorDescF16 = net_map.layers[k].normDstTensorDescF16; |
| | | |
| | | net_combined.layers[k].srcTensorDesc = net_map.layers[k].srcTensorDesc; |
| | | net_combined.layers[k].dstTensorDesc = net_map.layers[k].dstTensorDesc; |
| | | |
| | | net_combined.layers[k].srcTensorDesc16 = net_map.layers[k].srcTensorDesc16; |
| | | net_combined.layers[k].dstTensorDesc16 = net_map.layers[k].dstTensorDesc16; |
| | | #endif // CUDNN |
| | | } |
| | | } |
| | | return net_combined; |
| | | } |
| | | |
| | | void free_network_recurrent_state(network net) |
| | | { |
| | | int k; |
| | | for (k = 0; k < net.n; ++k) { |
| | | if (net.layers[k].type == CONV_LSTM) free_state_conv_lstm(net.layers[k]); |
| | | if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]); |
| | | } |
| | | } |
| | | |
| | | void randomize_network_recurrent_state(network net) |
| | | { |
| | | int k; |
| | | for (k = 0; k < net.n; ++k) { |
| | | if (net.layers[k].type == CONV_LSTM) randomize_state_conv_lstm(net.layers[k]); |
| | | if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]); |
| | | } |
| | | } |
| | | |
| | | |
| | | void remember_network_recurrent_state(network net) |
| | | { |
| | | int k; |
| | | for (k = 0; k < net.n; ++k) { |
| | | if (net.layers[k].type == CONV_LSTM) remember_state_conv_lstm(net.layers[k]); |
| | | //if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]); |
| | | } |
| | | } |
| | | |
| | | void restore_network_recurrent_state(network net) |
| | | { |
| | | int k; |
| | | for (k = 0; k < net.n; ++k) { |
| | | if (net.layers[k].type == CONV_LSTM) restore_state_conv_lstm(net.layers[k]); |
| | | if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]); |
| | | } |
| | | } |
| | | |
| | | |
| | | int is_ema_initialized(network net) |
| | | { |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | layer l = net.layers[i]; |
| | | if (l.type == CONVOLUTIONAL) { |
| | | int k; |
| | | if (l.weights_ema) { |
| | | for (k = 0; k < l.nweights; ++k) { |
| | | if (l.weights_ema[k] != 0) return 1; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | return 0; |
| | | } |
| | | |
| | | void ema_update(network net, float ema_alpha) |
| | | { |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | layer l = net.layers[i]; |
| | | if (l.type == CONVOLUTIONAL) { |
| | | #ifdef GPU |
| | | if (gpu_index >= 0) { |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | int k; |
| | | if (l.weights_ema) { |
| | | for (k = 0; k < l.nweights; ++k) { |
| | | l.weights_ema[k] = ema_alpha * l.weights_ema[k] + (1 - ema_alpha) * l.weights[k]; |
| | | } |
| | | } |
| | | |
| | | for (k = 0; k < l.n; ++k) { |
| | | if (l.biases_ema) l.biases_ema[k] = ema_alpha * l.biases_ema[k] + (1 - ema_alpha) * l.biases[k]; |
| | | if (l.scales_ema) l.scales_ema[k] = ema_alpha * l.scales_ema[k] + (1 - ema_alpha) * l.scales[k]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | void ema_apply(network net) |
| | | { |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | layer l = net.layers[i]; |
| | | if (l.type == CONVOLUTIONAL) { |
| | | int k; |
| | | if (l.weights_ema) { |
| | | for (k = 0; k < l.nweights; ++k) { |
| | | l.weights[k] = l.weights_ema[k]; |
| | | } |
| | | } |
| | | |
| | | for (k = 0; k < l.n; ++k) { |
| | | if (l.biases_ema) l.biases[k] = l.biases_ema[k]; |
| | | if (l.scales_ema) l.scales[k] = l.scales_ema[k]; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | if (gpu_index >= 0) { |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | |
| | | void reject_similar_weights(network net, float sim_threshold) |
| | | { |
| | | int i; |
| | | for (i = 0; i < net.n; ++i) { |
| | | layer l = net.layers[i]; |
| | | if (i == 0) continue; |
| | | if (net.n > i + 1) if (net.layers[i + 1].type == YOLO) continue; |
| | | if (net.n > i + 2) if (net.layers[i + 2].type == YOLO) continue; |
| | | if (net.n > i + 3) if (net.layers[i + 3].type == YOLO) continue; |
| | | |
| | | if (l.type == CONVOLUTIONAL && l.activation != LINEAR) { |
| | | #ifdef GPU |
| | | if (gpu_index >= 0) { |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | int k, j; |
| | | float max_sim = -1000; |
| | | int max_sim_index = 0; |
| | | int max_sim_index2 = 0; |
| | | int filter_size = l.size*l.size*l.c; |
| | | for (k = 0; k < l.n; ++k) |
| | | { |
| | | for (j = k+1; j < l.n; ++j) |
| | | { |
| | | int w1 = k; |
| | | int w2 = j; |
| | | |
| | | float sim = cosine_similarity(&l.weights[filter_size*w1], &l.weights[filter_size*w2], filter_size); |
| | | if (sim > max_sim) { |
| | | max_sim = sim; |
| | | max_sim_index = w1; |
| | | max_sim_index2 = w2; |
| | | } |
| | | } |
| | | } |
| | | |
| | | printf(" reject_similar_weights: i = %d, l.n = %d, w1 = %d, w2 = %d, sim = %f, thresh = %f \n", |
| | | i, l.n, max_sim_index, max_sim_index2, max_sim, sim_threshold); |
| | | |
| | | if (max_sim > sim_threshold) { |
| | | printf(" rejecting... \n"); |
| | | float scale = sqrt(2. / (l.size*l.size*l.c / l.groups)); |
| | | |
| | | for (k = 0; k < filter_size; ++k) { |
| | | l.weights[max_sim_index*filter_size + k] = scale*rand_uniform(-1, 1); |
| | | } |
| | | if (l.biases) l.biases[max_sim_index] = 0.0f; |
| | | if (l.scales) l.scales[max_sim_index] = 1.0f; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | if (gpu_index >= 0) { |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | } |
| | | } |