Temperature softmax and 10 shape PCA regression.
| | |
| | | # This is just Hopenet with 3 output layers for yaw, pitch and roll. |
| | | def __init__(self, block, layers, num_bins, shape_bins): |
| | | self.inplanes = 64 |
| | | super(Hopenet, self).__init__() |
| | | super(Hopenet_shape, self).__init__() |
| | | self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
| | | bias=False) |
| | | self.bn1 = nn.BatchNorm2d(64) |
| | |
| | | self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) |
| | | self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) |
| | | self.fc_roll = nn.Linear(512 * block.expansion, num_bins) |
| | | self.fc_shape_0 = nn.Linear(512 * block.expansion, shape_bins) |
| | | self.fc_shape_1 = nn.Linear(512 * block.expansion, shape_bins) |
| | | self.fc_shape_2 = nn.Linear(512 * block.expansion, shape_bins) |
| | | self.fc_shape_3 = nn.Linear(512 * block.expansion, shape_bins) |
| | | self.fc_shape_4 = nn.Linear(512 * block.expansion, shape_bins) |
| | | self.fc_shape_5 = nn.Linear(512 * block.expansion, shape_bins) |
| | | self.fc_shape_6 = nn.Linear(512 * block.expansion, shape_bins) |
| | | self.fc_shape_7 = nn.Linear(512 * block.expansion, shape_bins) |
| | | self.fc_shape_8 = nn.Linear(512 * block.expansion, shape_bins) |
| | | self.fc_shape_9 = nn.Linear(512 * block.expansion, shape_bins) |
| | | |
| | | for m in self.modules(): |
| | | if isinstance(m, nn.Conv2d): |
| | |
| | | yaw = self.fc_yaw(x) |
| | | pitch = self.fc_pitch(x) |
| | | roll = self.fc_roll(x) |
| | | shape_1 = self.fc_shape_1(x) |
| | | |
| | | return yaw, pitch, roll, shape_1 |
| | | shape = [] |
| | | shape.append(self.fc_shape_0(x)) |
| | | shape.append(self.fc_shape_1(x)) |
| | | shape.append(self.fc_shape_2(x)) |
| | | shape.append(self.fc_shape_3(x)) |
| | | shape.append(self.fc_shape_4(x)) |
| | | shape.append(self.fc_shape_5(x)) |
| | | shape.append(self.fc_shape_6(x)) |
| | | shape.append(self.fc_shape_7(x)) |
| | | shape.append(self.fc_shape_8(x)) |
| | | shape.append(self.fc_shape_9(x)) |
| | | |
| | | return yaw, pitch, roll, shape |
| | |
| | | _, pitch_bpred = torch.max(pitch.data, 1) |
| | | _, roll_bpred = torch.max(roll.data, 1) |
| | | |
| | | yaw_predicted = F.softmax(yaw) |
| | | pitch_predicted = F.softmax(pitch) |
| | | roll_predicted = F.softmax(roll) |
| | | |
| | | # Continuous predictions |
| | | yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) |
| | | pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) |
| | | roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) |
| | | yaw_predicted = utils.softmax_temperature(yaw.data, 1) |
| | | pitch_predicted = utils.softmax_temperature(pitch.data, 1) |
| | | roll_predicted = utils.softmax_temperature(roll.data, 1) |
| | | |
| | | yaw_predicted = yaw_predicted.cpu() |
| | | pitch_predicted = pitch_predicted.cpu() |
| | | roll_predicted = roll_predicted.cpu() |
| | | yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() |
| | | pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() |
| | | |
| | | # Mean absolute error |
| | | yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) |
New file |
| | |
| | | import numpy as np |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | | from torch.utils.data import DataLoader |
| | | from torchvision import transforms |
| | | import torch.backends.cudnn as cudnn |
| | | import torchvision |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import utils |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | | parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') |
| | | parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', |
| | | default=0, type=int) |
| | | parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', |
| | | default='', type=str) |
| | | parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', |
| | | default=1, type=int) |
| | | parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', |
| | | default=False, type=bool) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | | return args |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | gpu = args.gpu_id |
| | | snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') |
| | | |
| | | # ResNet101 with 3 outputs. |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet_shape(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 60) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | |
| | | print 'Loading snapshot.' |
| | | # Load snapshot |
| | | saved_state_dict = torch.load(snapshot_path) |
| | | model.load_state_dict(saved_state_dict) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224), |
| | | transforms.RandomCrop(224), transforms.ToTensor()]) |
| | | |
| | | pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list, |
| | | transformations) |
| | | test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=args.batch_size, |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | |
| | | print 'Ready to test network.' |
| | | |
| | | # Test the Model |
| | | model.eval() # Change model to 'eval' mode (BN uses moving mean/var). |
| | | total = 0 |
| | | n_margins = 20 |
| | | yaw_correct = np.zeros(n_margins) |
| | | pitch_correct = np.zeros(n_margins) |
| | | roll_correct = np.zeros(n_margins) |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | yaw_error = .0 |
| | | pitch_error = .0 |
| | | roll_error = .0 |
| | | |
| | | l1loss = torch.nn.L1Loss(size_average=False) |
| | | |
| | | for i, (images, labels, name) in enumerate(test_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | total += labels.size(0) |
| | | label_yaw = labels[:,0].float() |
| | | label_pitch = labels[:,1].float() |
| | | label_roll = labels[:,2].float() |
| | | |
| | | yaw, pitch, roll, shape = model(images) |
| | | |
| | | # Binned predictions |
| | | _, yaw_bpred = torch.max(yaw.data, 1) |
| | | _, pitch_bpred = torch.max(pitch.data, 1) |
| | | _, roll_bpred = torch.max(roll.data, 1) |
| | | |
| | | # Continuous predictions |
| | | yaw_predicted = utils.softmax_temperature(yaw.data, 1) |
| | | pitch_predicted = utils.softmax_temperature(pitch.data, 1) |
| | | roll_predicted = utils.softmax_temperature(roll.data, 1) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() |
| | | pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() |
| | | |
| | | # Mean absolute error |
| | | yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) |
| | | pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) |
| | | roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) |
| | | |
| | | # Binned Accuracy |
| | | # for er in xrange(n_margins): |
| | | # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) |
| | | # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) |
| | | # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) |
| | | |
| | | # print label_yaw[0], yaw_bpred[0,0] |
| | | |
| | | # Save images with pose cube. |
| | | # TODO: fix for larger batch size |
| | | if args.save_viz: |
| | | name = name[0] |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) |
| | | #print os.path.join('output/images', name + '.jpg') |
| | | #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 |
| | | #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |
| | | ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, |
| | | pitch_error / total, roll_error / total)) |
| | | |
| | | # Binned accuracy |
| | | # for idx in xrange(len(yaw_correct)): |
| | | # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total |
| | |
| | | b.append(model.fc_yaw) |
| | | b.append(model.fc_pitch) |
| | | b.append(model.fc_roll) |
| | | b.append(model.fc_shape_0) |
| | | b.append(model.fc_shape_1) |
| | | b.append(model.fc_shape_2) |
| | | b.append(model.fc_shape_3) |
| | | b.append(model.fc_shape_4) |
| | | b.append(model.fc_shape_5) |
| | | b.append(model.fc_shape_6) |
| | | b.append(model.fc_shape_7) |
| | | b.append(model.fc_shape_8) |
| | | b.append(model.fc_shape_9) |
| | | |
| | | for i in range(len(b)): |
| | | for j in b[i].modules(): |
| | | for k in j.parameters(): |
| | |
| | | # ResNet101 with 3 outputs |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | model = hopenet.Hopenet_shape(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 60) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) |
| | |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.CrossEntropyLoss() |
| | | reg_criterion = nn.MSELoss() |
| | | criterion = nn.CrossEntropyLoss().cuda(gpu) |
| | | reg_criterion = nn.MSELoss().cuda(gpu) |
| | | # Regression loss coefficient |
| | | alpha = 0.1 |
| | | lsm = nn.Softmax() |
| | |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | | |
| | | for epoch in range(num_epochs): |
| | | for i, (images, labels, name) in enumerate(train_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | label_yaw = Variable(labels[:,0]).cuda(gpu) |
| | | label_pitch = Variable(labels[:,1]).cuda(gpu) |
| | | label_roll = Variable(labels[:,2]).cuda(gpu) |
| | | label_shape_1 = Variable(labels[:,3]).cuda(gpu) |
| | | images = Variable(images.cuda(gpu)) |
| | | label_yaw = Variable(labels[:,0].cuda(gpu)) |
| | | label_pitch = Variable(labels[:,1].cuda(gpu)) |
| | | label_roll = Variable(labels[:,2].cuda(gpu)) |
| | | label_shape = Variable(labels[:,3:].cuda(gpu)) |
| | | |
| | | optimizer.zero_grad() |
| | | yaw, pitch, roll, shape_1 = model(images) |
| | | model.zero_grad() |
| | | |
| | | yaw, pitch, roll, shape = model(images) |
| | | |
| | | # Cross entropy loss |
| | | loss_yaw = criterion(yaw, label_yaw) |
| | |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) |
| | | loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) |
| | | |
| | | # Shape space loss |
| | | loss_shape_1 = criterion(shape_1, label_shape_1) |
| | | |
| | | # Total loss |
| | | loss_yaw += alpha * loss_reg_yaw |
| | | loss_pitch += alpha * loss_reg_pitch |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_shape_1] |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | |
| | | # Shape space loss |
| | | for idx in xrange(len(shape)): |
| | | loss_seq.append(criterion(shape[idx], label_shape[:,idx])) |
| | | |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | model.zero_grad() |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | |
| | | # %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f, Shape %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_seq[3].data[0])) |
| | | if epoch == 0: |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_iter_'+ str(i+1) + '.pkl') |
| | | 'output/snapshots/resnet50_shape_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_epoch_'+ str(epoch+1) + '.pkl') |
| | | 'output/snapshots/resnet50_shape_epoch_'+ str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_epoch_' + str(epoch+1) + '.pkl') |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_shape_epoch_' + str(epoch+1) + '.pkl') |
| | |
| | | import math |
| | | from math import cos, sin |
| | | |
| | | def softmax_temperature(tensor, temperature): |
| | | result = torch.exp(tensor / temperature) |
| | | result = torch.div(result, torch.sum(result, 1).unsqueeze(1).expand_as(result)) |
| | | return result |
| | | |
| | | def get_pose_params_from_mat(mat_path): |
| | | # This functions gets the pose parameters from the .mat |
| | | # Annotations that come with the 300W_LP dataset. |
New file |
| | |
| | | #!/usr/bin/env python |
| | | |
| | | ## |
| | | # Massimiliano Patacchiola, Plymouth University 2016 |
| | | # website: http://mpatacchiola.github.io/ |
| | | # email: massimiliano.patacchiola@plymouth.ac.uk |
| | | # Python code for information retrieval from the Annotated Facial Landmarks in the Wild (AFLW) dataset. |
| | | # In this example the faces are isolated and saved in a specified output folder. |
| | | # Some information (roll, pitch, yaw) are returned, they can be used to filter the images. |
| | | # This code requires OpenCV and Numpy. You can easily bypass the OpenCV calls if you want to use |
| | | # a different library. In order to use the code you have to unzip the images and store them in |
| | | # the directory "flickr" mantaining the original folders name (0, 2, 3). |
| | | # |
| | | # The following are the database properties available (last updated version 2012-11-28): |
| | | # |
| | | # databases: db_id, path, description |
| | | # faceellipse: face_id, x, y, ra, rb, theta, annot_type_id, upsidedown |
| | | # faceimages: image_id, db_id, file_id, filepath, bw, widht, height |
| | | # facemetadata: face_id, sex, occluded, glasses, bw, annot_type_id |
| | | # facepose: face_id, roll, pitch, yaw, annot_type_id |
| | | # facerect: face_id, x, y, w, h, annot_type_id |
| | | # faces: face_id, file_id, db_id |
| | | # featurecoords: face_id, feature_id, x, y |
| | | # featurecoordtype: feature_id, descr, code, x, y, z |
| | | |
| | | import sqlite3 |
| | | import cv2 |
| | | import os.path |
| | | import numpy as np |
| | | |
| | | #Change this paths according to your directories |
| | | images_path = "./flickr/" |
| | | storing_path = "./output/" |
| | | |
| | | def main(): |
| | | |
| | | #Image counter |
| | | counter = 1 |
| | | |
| | | #Open the sqlite database |
| | | conn = sqlite3.connect('aflw.sqlite') |
| | | c = conn.cursor() |
| | | |
| | | #Creating the query string for retriving: roll, pitch, yaw and faces position |
| | | #Change it according to what you want to retrieve |
| | | select_string = "faceimages.filepath, faces.face_id, facepose.roll, facepose.pitch, facepose.yaw, facerect.x, facerect.y, facerect.w, facerect.h" |
| | | from_string = "faceimages, faces, facepose, facerect" |
| | | where_string = "faces.face_id = facepose.face_id and faces.file_id = faceimages.file_id and faces.face_id = facerect.face_id" |
| | | query_string = "SELECT " + select_string + " FROM " + from_string + " WHERE " + where_string |
| | | |
| | | #It iterates through the rows returned from the query |
| | | for row in c.execute(query_string): |
| | | |
| | | #Using our specific query_string, the "row" variable will contain: |
| | | # row[0] = image path |
| | | # row[1] = face id |
| | | # row[2] = roll |
| | | # row[3] = pitch |
| | | # row[4] = yaw |
| | | # row[5] = face coord x |
| | | # row[6] = face coord y |
| | | # row[7] = face width |
| | | # row[8] = face heigh |
| | | |
| | | #Creating the full path names for input and output |
| | | input_path = images_path + str(row[0]) |
| | | output_path = storing_path + str(row[0]) |
| | | |
| | | #If the file exist then open it |
| | | if(os.path.isfile(input_path) == True): |
| | | #image = cv2.imread(input_path, 0) #load in grayscale |
| | | image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #load the colour version |
| | | |
| | | #Image dimensions |
| | | image_h, image_w = image.shape |
| | | #Roll, pitch and yaw |
| | | roll = row[2] |
| | | pitch = row[3] |
| | | yaw = row[4] |
| | | #Face rectangle coords |
| | | face_x = row[5] |
| | | face_y = row[6] |
| | | face_w = row[7] |
| | | face_h = row[8] |
| | | |
| | | #Error correction |
| | | if(face_x < 0): face_x = 0 |
| | | if(face_y < 0): face_y = 0 |
| | | if(face_w > image_w): |
| | | face_w = image_w |
| | | face_h = image_w |
| | | if(face_h > image_h): |
| | | face_h = image_h |
| | | face_w = image_h |
| | | |
| | | #Crop the face from the image |
| | | image_cropped = np.copy(image[face_y:face_y+face_h, face_x:face_x+face_w]) |
| | | #Uncomment the lines below if you want to rescale the image to a particular size |
| | | #to_size = 64 |
| | | #image_rescaled = cv2.resize(image_cropped, (to_size,to_size), interpolation = cv2.INTER_AREA) |
| | | #Uncomment the line below if you want to use adaptive histogram normalisation |
| | | #clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(5,5)) |
| | | #image_normalised = clahe.apply(image_rescaled) |
| | | #Save the image |
| | | #change "image_cropped" with the last uncommented variable name above |
| | | cv2.imwrite(output_path, image_cropped) |
| | | |
| | | #Printing the information |
| | | print "Counter: " + str(counter) |
| | | print "iPath: " + input_path |
| | | print "oPath: " + output_path |
| | | print "Roll: " + str(roll) |
| | | print "Pitch: " + str(pitch) |
| | | print "Yaw: " + str(yaw) |
| | | print "x: " + str(face_x) |
| | | print "y: " + str(face_y) |
| | | print "w: " + str(face_w) |
| | | print "h: " + str(face_h) |
| | | print "" |
| | | |
| | | #Increasing the counter |
| | | counter = counter + 1 |
| | | |
| | | #if the file does not exits it return an exception |
| | | else: |
| | | raise ValueError('Error: I cannot find the file specified: ' + str(input_path)) |
| | | |
| | | #Once finished the iteration it closes the database |
| | | c.close() |
| | | |
| | | if __name__ == "__main__": |
| | | main() |
| | | |