Doing pretty well now with resnet50 and adam with low learning rate. Also fixed test script to use large batches.
| | |
| | | # ResNet101 with 3 outputs. |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | # ResNet18 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | |
| | | print 'Loading snapshot.' |
| | | # Load snapshot |
| | |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | batch_size = 1 |
| | | gpu = args.gpu_id |
| | | snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') |
| | | |
| | | # ResNet101 with 3 outputs. |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | # ResNet18 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | |
| | | print 'Loading snapshot.' |
| | | # Load snapshot |
| | |
| | | pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list, |
| | | transformations) |
| | | test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | | batch_size=args.batch_size, |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | |
| | | pitch_error = .0 |
| | | roll_error = .0 |
| | | |
| | | l1loss = torch.nn.L1Loss(size_average=False) |
| | | |
| | | for i, (images, labels, name) in enumerate(test_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | total += labels.size(0) |
| | | label_yaw = labels[:,0] |
| | | label_pitch = labels[:,1] |
| | | label_roll = labels[:,2] |
| | | label_yaw = labels[:,0].float() |
| | | label_pitch = labels[:,1].float() |
| | | label_roll = labels[:,2].float() |
| | | |
| | | yaw, pitch, roll = model(images) |
| | | |
| | |
| | | roll_predicted = F.softmax(roll) |
| | | |
| | | # Continuous predictions |
| | | yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) |
| | | pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) |
| | | roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) |
| | | yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) |
| | | pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) |
| | | roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) |
| | | |
| | | yaw_predicted = yaw_predicted.cpu() |
| | | pitch_predicted = pitch_predicted.cpu() |
| | | roll_predicted = roll_predicted.cpu() |
| | | |
| | | # Mean absolute error |
| | | yaw_error += abs(yaw_predicted - label_yaw[0]) * 3 |
| | | pitch_error += abs(pitch_predicted - label_pitch[0]) * 3 |
| | | roll_error += abs(roll_predicted - label_roll[0]) * 3 |
| | | yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) |
| | | pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) |
| | | roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) |
| | | |
| | | # Binned Accuracy |
| | | # for er in xrange(n_margins): |
| | |
| | | # print label_yaw[0], yaw_bpred[0,0] |
| | | |
| | | # Save images with pose cube. |
| | | # TODO: fix for larger batch size |
| | | if args.save_viz: |
| | | name = name[0] |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) |
| | | #print os.path.join('output/images', name + '.jpg') |
| | | #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 |
| | | #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99) |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |
| | |
| | | from torchvision import transforms |
| | | import torchvision |
| | | import torch.backends.cudnn as cudnn |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.CrossEntropyLoss() |
| | | reg_criterion = nn.MSELoss() |
| | | # Regression loss coefficient |
| | | alpha = 0.01 |
| | | lsm = nn.Softmax() |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | lr = args.lr) |
| | | # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | # lr = args.lr, momentum=0.9) |
| | | # optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | |
| | | |
| | | optimizer.zero_grad() |
| | | yaw, pitch, roll = model(images) |
| | | |
| | | loss_yaw = criterion(yaw, label_yaw) |
| | | loss_pitch = criterion(pitch, label_pitch) |
| | | loss_roll = criterion(roll, label_roll) |
| | | |
| | | # loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | # grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | # torch.autograd.backward(loss_seq, grad_seq) |
| | | # optimizer.step() |
| | | |
| | | # MSE loss |
| | | yaw_predicted = F.softmax(yaw) |
| | | pitch_predicted = F.softmax(pitch) |
| | | roll_predicted = F.softmax(roll) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) |
| | | pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) |
| | | roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) |
| | | |
| | | loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) |
| | | loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) |
| | | |
| | | # print yaw_predicted[0], label_yaw.data[0] |
| | | |
| | | loss_yaw += alpha * loss_reg_yaw |
| | | loss_pitch += alpha * loss_reg_pitch |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | model.zero_grad() |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | | # print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | # %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | # if epoch == 0: |
| | | # torch.save(model.state_dict(), |
| | | # 'output/snapshots/resnet18_sgd_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet18_cr_epoch_'+ str(epoch+1) + '.pkl') |
| | | 'output/snapshots/resnet18_sgd_epoch_'+ str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet18_cr_epoch_' + str(epoch+1) + '.pkl') |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet18_sgd_epoch_' + str(epoch+1) + '.pkl') |
New file |
| | |
| | | import numpy as np |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | | from torch.utils.data import DataLoader |
| | | from torchvision import transforms |
| | | import torchvision |
| | | import torch.backends.cudnn as cudnn |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import torch.utils.model_zoo as model_zoo |
| | | |
| | | model_urls = { |
| | | 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
| | | 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
| | | 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
| | | 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
| | | 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
| | | } |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | | parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') |
| | | parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', |
| | | default=0, type=int) |
| | | parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', |
| | | default=5, type=int) |
| | | parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', |
| | | default=16, type=int) |
| | | parser.add_argument('--lr', dest='lr', help='Base learning rate.', |
| | | default=0.001, type=float) |
| | | parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | | return args |
| | | |
| | | def get_ignored_params(model): |
| | | # Generator function that yields ignored params. |
| | | b = [] |
| | | b.append(model.conv1) |
| | | b.append(model.bn1) |
| | | b.append(model.layer1) |
| | | b.append(model.layer2) |
| | | b.append(model.layer3) |
| | | b.append(model.layer4) |
| | | for i in range(len(b)): |
| | | for j in b[i].modules(): |
| | | for k in j.parameters(): |
| | | yield k |
| | | |
| | | def get_non_ignored_params(model): |
| | | # Generator function that yields params that will be optimized. |
| | | b = [] |
| | | b.append(model.fc_yaw) |
| | | b.append(model.fc_pitch) |
| | | b.append(model.fc_roll) |
| | | for i in range(len(b)): |
| | | for j in b[i].modules(): |
| | | for k in j.parameters(): |
| | | yield k |
| | | |
| | | def load_filtered_state_dict(model, snapshot): |
| | | # By user apaszke from discuss.pytorch.org |
| | | model_dict = model.state_dict() |
| | | # 1. filter out unnecessary keys |
| | | snapshot = {k: v for k, v in snapshot.items() if k in model_dict} |
| | | # 2. overwrite entries in the existing state dict |
| | | model_dict.update(snapshot) |
| | | # 3. load the new state dict |
| | | model.load_state_dict(model_dict) |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | num_epochs = args.num_epochs |
| | | batch_size = args.batch_size |
| | | gpu = args.gpu_id |
| | | |
| | | if not os.path.exists('output/snapshots'): |
| | | os.makedirs('output/snapshots') |
| | | |
| | | # ResNet101 with 3 outputs |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), |
| | | transforms.ToTensor()]) |
| | | |
| | | pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list, |
| | | transformations) |
| | | train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | | shuffle=True, |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.CrossEntropyLoss() |
| | | reg_criterion = nn.MSELoss() |
| | | # Regression loss coefficient |
| | | alpha = 0.1 |
| | | lsm = nn.Softmax() |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | lr = args.lr) |
| | | # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | # lr = args.lr, momentum=0.9, weight_decay=5e-4) |
| | | # optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | # lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | | |
| | | for epoch in range(num_epochs): |
| | | for i, (images, labels, name) in enumerate(train_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | label_yaw = Variable(labels[:,0]).cuda(gpu) |
| | | label_pitch = Variable(labels[:,1]).cuda(gpu) |
| | | label_roll = Variable(labels[:,2]).cuda(gpu) |
| | | |
| | | optimizer.zero_grad() |
| | | yaw, pitch, roll = model(images) |
| | | |
| | | loss_yaw = criterion(yaw, label_yaw) |
| | | loss_pitch = criterion(pitch, label_pitch) |
| | | loss_roll = criterion(roll, label_roll) |
| | | |
| | | # loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | # grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | # torch.autograd.backward(loss_seq, grad_seq) |
| | | # optimizer.step() |
| | | |
| | | # MSE loss |
| | | yaw_predicted = F.softmax(yaw) |
| | | pitch_predicted = F.softmax(pitch) |
| | | roll_predicted = F.softmax(roll) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) |
| | | pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) |
| | | roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) |
| | | |
| | | loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) |
| | | loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) |
| | | |
| | | # print yaw_predicted[0], label_yaw.data[0] |
| | | |
| | | loss_yaw += alpha * loss_reg_yaw |
| | | loss_pitch += alpha * loss_reg_pitch |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | model.zero_grad() |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | | # print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | # %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | if epoch == 0: |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_epoch_'+ str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_epoch_' + str(epoch+1) + '.pkl') |
New file |
| | |
| | | import numpy as np |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | | from torch.utils.data import DataLoader |
| | | from torchvision import transforms |
| | | import torchvision |
| | | import torch.backends.cudnn as cudnn |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import torch.utils.model_zoo as model_zoo |
| | | |
| | | model_urls = { |
| | | 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
| | | 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
| | | 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
| | | 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
| | | 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
| | | } |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | | parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') |
| | | parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', |
| | | default=0, type=int) |
| | | parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', |
| | | default=5, type=int) |
| | | parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', |
| | | default=16, type=int) |
| | | parser.add_argument('--lr', dest='lr', help='Base learning rate.', |
| | | default=0.001, type=float) |
| | | parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | | return args |
| | | |
| | | def get_ignored_params(model): |
| | | # Generator function that yields ignored params. |
| | | b = [] |
| | | b.append(model.conv1) |
| | | b.append(model.bn1) |
| | | b.append(model.layer1) |
| | | b.append(model.layer2) |
| | | b.append(model.layer3) |
| | | b.append(model.layer4) |
| | | for i in range(len(b)): |
| | | for j in b[i].modules(): |
| | | for k in j.parameters(): |
| | | yield k |
| | | |
| | | def get_non_ignored_params(model): |
| | | # Generator function that yields params that will be optimized. |
| | | b = [] |
| | | b.append(model.fc_yaw) |
| | | b.append(model.fc_pitch) |
| | | b.append(model.fc_roll) |
| | | for i in range(len(b)): |
| | | for j in b[i].modules(): |
| | | for k in j.parameters(): |
| | | yield k |
| | | |
| | | def load_filtered_state_dict(model, snapshot): |
| | | # By user apaszke from discuss.pytorch.org |
| | | model_dict = model.state_dict() |
| | | # 1. filter out unnecessary keys |
| | | snapshot = {k: v for k, v in snapshot.items() if k in model_dict} |
| | | # 2. overwrite entries in the existing state dict |
| | | model_dict.update(snapshot) |
| | | # 3. load the new state dict |
| | | model.load_state_dict(model_dict) |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | num_epochs = args.num_epochs |
| | | batch_size = args.batch_size |
| | | gpu = args.gpu_id |
| | | |
| | | if not os.path.exists('output/snapshots'): |
| | | os.makedirs('output/snapshots') |
| | | |
| | | # ResNet101 with 3 outputs |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), |
| | | transforms.ToTensor()]) |
| | | |
| | | pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list, |
| | | transformations) |
| | | train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | | shuffle=True, |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.CrossEntropyLoss() |
| | | reg_criterion = nn.MSELoss() |
| | | # Regression loss coefficient |
| | | alpha = 0.1 |
| | | lsm = nn.Softmax() |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | lr = args.lr) |
| | | # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | # lr = args.lr, momentum=0.9, weight_decay=5e-4) |
| | | # optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | # lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | | |
| | | for epoch in range(num_epochs): |
| | | for i, (images, labels, name) in enumerate(train_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | label_yaw = Variable(labels[:,0]).cuda(gpu) |
| | | label_pitch = Variable(labels[:,1]).cuda(gpu) |
| | | label_roll = Variable(labels[:,2]).cuda(gpu) |
| | | |
| | | optimizer.zero_grad() |
| | | yaw, pitch, roll = model(images) |
| | | |
| | | loss_yaw = criterion(yaw, label_yaw) |
| | | loss_pitch = criterion(pitch, label_pitch) |
| | | loss_roll = criterion(roll, label_roll) |
| | | |
| | | # loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | # grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | # torch.autograd.backward(loss_seq, grad_seq) |
| | | # optimizer.step() |
| | | |
| | | # MSE loss |
| | | yaw_predicted = F.softmax(yaw) |
| | | pitch_predicted = F.softmax(pitch) |
| | | roll_predicted = F.softmax(roll) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) |
| | | pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) |
| | | roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) |
| | | |
| | | loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) |
| | | loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) |
| | | |
| | | # print yaw_predicted[0], label_yaw.data[0] |
| | | |
| | | loss_yaw += alpha * loss_reg_yaw |
| | | loss_pitch += alpha * loss_reg_pitch |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | model.zero_grad() |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | | # print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | # %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | if epoch == 0: |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_lowlr_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_lowlr_epoch_'+ str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_lowlr_epoch_' + str(epoch+1) + '.pkl') |
| | |
| | | "cells": [ |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 156, |
| | | "execution_count": 187, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 157, |
| | | "execution_count": 188, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | |
| | | "video_path = '../data/video/SGT036_2016_07_25_pivothead_AVI.avi'\n", |
| | | "bbox_path = '../data/video/annotations/SGT036_childface.txt'\n", |
| | | "\n", |
| | | "annot_path = '../output/video/output-SGT036_resnet18_cr_epoch_1.txt'\n", |
| | | "output_string = 'SGT036_resnet18_cr_epoch_1_flat_smoothed'" |
| | | "annot_path = '../output/video/output-SGT036_resnet50_lowlr_epoch_20.txt'\n", |
| | | "output_string = 'SGT036_resnet50_lowlr_epoch_20_smoothed'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 158, |
| | | "execution_count": 189, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "[-6.069214 -0.831665 0.53318 ..., -3.836042 -3.868275 -2.377155]\n", |
| | | "[ 4.170376 0.790443 -0.178368 ..., -3.437805 0.396835 -1.276176]\n", |
| | | "(8508,)\n", |
| | | "(53464,)\n" |
| | | ] |
| | |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 159, |
| | | "execution_count": 190, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | |
| | | } |
| | | ], |
| | | "source": [ |
| | | "window_len = 6\n", |
| | | "window_len = 5\n", |
| | | "pad = window_len / 2\n", |
| | | "window = 'flat'\n", |
| | | "window_2 = 'flat'\n", |
| | | "window_len_2 = 7\n", |
| | | "pad_2 = window_len_2 / 2\n", |
| | | "\n", |
| | | "s = np.r_[y[window_len-1:0:-1],y,y[-2:-window_len-1:-1]]\n", |
| | | "t = np.r_[p[window_len-1:0:-1],p,p[-2:-window_len-1:-1]]\n", |
| | | "u = np.r_[r[window_len-1:0:-1],r,r[-2:-window_len-1:-1]]\n", |
| | | "\n", |
| | | "xa = np.r_[x_min_arr[window_len-1:0:-1],x_min_arr,x_min_arr[-2:-window_len-1:-1]]\n", |
| | | "xb = np.r_[x_max_arr[window_len-1:0:-1],x_max_arr,x_max_arr[-2:-window_len-1:-1]]\n", |
| | | "ya = np.r_[y_min_arr[window_len-1:0:-1],y_min_arr,y_min_arr[-2:-window_len-1:-1]]\n", |
| | | "yb = np.r_[y_max_arr[window_len-1:0:-1],y_max_arr,y_max_arr[-2:-window_len-1:-1]]\n", |
| | | "xa = np.r_[x_min_arr[window_len_2-1:0:-1],x_min_arr,x_min_arr[-2:-window_len_2-1:-1]]\n", |
| | | "xb = np.r_[x_max_arr[window_len_2-1:0:-1],x_max_arr,x_max_arr[-2:-window_len_2-1:-1]]\n", |
| | | "ya = np.r_[y_min_arr[window_len_2-1:0:-1],y_min_arr,y_min_arr[-2:-window_len_2-1:-1]]\n", |
| | | "yb = np.r_[y_max_arr[window_len_2-1:0:-1],y_max_arr,y_max_arr[-2:-window_len_2-1:-1]]\n", |
| | | "\n", |
| | | "if window == 'flat':\n", |
| | | " w=np.ones(window_len, 'd')\n", |
| | | "else:\n", |
| | | " w=eval('np.' + window + '(window_len)')\n", |
| | | " \n", |
| | | "if window_2 == 'flat':\n", |
| | | " w_2=np.ones(window_len_2, 'd')\n", |
| | | "else:\n", |
| | | " w_2=eval('np.' + window_2 + '(window_len_2)') \n", |
| | | "\n", |
| | | "y = np.convolve(w / w.sum(), s, mode='valid')[pad:-pad]\n", |
| | | "p = np.convolve(w / w.sum(), t, mode='valid')[pad:-pad]\n", |
| | | "r = np.convolve(w / w.sum(), u, mode='valid')[pad:-pad]\n", |
| | | "x_min_arr = np.convolve(w / w.sum(), xa, mode='valid')[pad:-pad]\n", |
| | | "x_max_arr = np.convolve(w / w.sum(), xb, mode='valid')[pad:-pad]\n", |
| | | "y_min_arr = np.convolve(w / w.sum(), ya, mode='valid')[pad:-pad]\n", |
| | | "y_max_arr = np.convolve(w / w.sum(), yb, mode='valid')[pad:-pad]\n", |
| | | "x_min_arr = np.convolve(w_2 / w_2.sum(), xa, mode='valid')[pad_2:-pad_2]\n", |
| | | "x_max_arr = np.convolve(w_2 / w_2.sum(), xb, mode='valid')[pad_2:-pad_2]\n", |
| | | "y_min_arr = np.convolve(w_2 / w_2.sum(), ya, mode='valid')[pad_2:-pad_2]\n", |
| | | "y_max_arr = np.convolve(w_2 / w_2.sum(), yb, mode='valid')[pad_2:-pad_2]\n", |
| | | "\n", |
| | | "pose_dict = {}\n", |
| | | "bbox_dict = {}\n", |
| | |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 160, |
| | | "execution_count": 191, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | |
| | | "cells": [ |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 156, |
| | | "execution_count": 197, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 157, |
| | | "execution_count": 198, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | |
| | | "video_path = '../data/video/SGT036_2016_07_25_pivothead_AVI.avi'\n", |
| | | "bbox_path = '../data/video/annotations/SGT036_childface.txt'\n", |
| | | "\n", |
| | | "annot_path = '../output/video/output-SGT036_resnet18_cr_epoch_1.txt'\n", |
| | | "output_string = 'SGT036_resnet18_cr_epoch_1_flat_smoothed'" |
| | | "annot_path = '../output/video/output-SGT036_resnet50_lowlr_epoch_20.txt'\n", |
| | | "output_string = 'SGT036_resnet50_lowlr_epoch_20_smoothed'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 158, |
| | | "execution_count": 199, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "[-6.069214 -0.831665 0.53318 ..., -3.836042 -3.868275 -2.377155]\n", |
| | | "[ 4.170376 0.790443 -0.178368 ..., -3.437805 0.396835 -1.276176]\n", |
| | | "(8508,)\n", |
| | | "(53464,)\n" |
| | | ] |
| | |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 159, |
| | | "execution_count": 200, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | |
| | | } |
| | | ], |
| | | "source": [ |
| | | "window_len = 6\n", |
| | | "window_len = 7\n", |
| | | "pad = window_len / 2\n", |
| | | "window = 'flat'\n", |
| | | "window_2 = 'flat'\n", |
| | | "window_len_2 = 7\n", |
| | | "pad_2 = window_len_2 / 2\n", |
| | | "\n", |
| | | "s = np.r_[y[window_len-1:0:-1],y,y[-2:-window_len-1:-1]]\n", |
| | | "t = np.r_[p[window_len-1:0:-1],p,p[-2:-window_len-1:-1]]\n", |
| | | "u = np.r_[r[window_len-1:0:-1],r,r[-2:-window_len-1:-1]]\n", |
| | | "\n", |
| | | "xa = np.r_[x_min_arr[window_len-1:0:-1],x_min_arr,x_min_arr[-2:-window_len-1:-1]]\n", |
| | | "xb = np.r_[x_max_arr[window_len-1:0:-1],x_max_arr,x_max_arr[-2:-window_len-1:-1]]\n", |
| | | "ya = np.r_[y_min_arr[window_len-1:0:-1],y_min_arr,y_min_arr[-2:-window_len-1:-1]]\n", |
| | | "yb = np.r_[y_max_arr[window_len-1:0:-1],y_max_arr,y_max_arr[-2:-window_len-1:-1]]\n", |
| | | "xa = np.r_[x_min_arr[window_len_2-1:0:-1],x_min_arr,x_min_arr[-2:-window_len_2-1:-1]]\n", |
| | | "xb = np.r_[x_max_arr[window_len_2-1:0:-1],x_max_arr,x_max_arr[-2:-window_len_2-1:-1]]\n", |
| | | "ya = np.r_[y_min_arr[window_len_2-1:0:-1],y_min_arr,y_min_arr[-2:-window_len_2-1:-1]]\n", |
| | | "yb = np.r_[y_max_arr[window_len_2-1:0:-1],y_max_arr,y_max_arr[-2:-window_len_2-1:-1]]\n", |
| | | "\n", |
| | | "if window == 'flat':\n", |
| | | " w=np.ones(window_len, 'd')\n", |
| | | "else:\n", |
| | | " w=eval('np.' + window + '(window_len)')\n", |
| | | " \n", |
| | | "if window_2 == 'flat':\n", |
| | | " w_2=np.ones(window_len_2, 'd')\n", |
| | | "else:\n", |
| | | " w_2=eval('np.' + window_2 + '(window_len_2)') \n", |
| | | "\n", |
| | | "y = np.convolve(w / w.sum(), s, mode='valid')[pad:-pad]\n", |
| | | "p = np.convolve(w / w.sum(), t, mode='valid')[pad:-pad]\n", |
| | | "r = np.convolve(w / w.sum(), u, mode='valid')[pad:-pad]\n", |
| | | "x_min_arr = np.convolve(w / w.sum(), xa, mode='valid')[pad:-pad]\n", |
| | | "x_max_arr = np.convolve(w / w.sum(), xb, mode='valid')[pad:-pad]\n", |
| | | "y_min_arr = np.convolve(w / w.sum(), ya, mode='valid')[pad:-pad]\n", |
| | | "y_max_arr = np.convolve(w / w.sum(), yb, mode='valid')[pad:-pad]\n", |
| | | "x_min_arr = np.convolve(w_2 / w_2.sum(), xa, mode='valid')[pad_2:-pad_2]\n", |
| | | "x_max_arr = np.convolve(w_2 / w_2.sum(), xb, mode='valid')[pad_2:-pad_2]\n", |
| | | "y_min_arr = np.convolve(w_2 / w_2.sum(), ya, mode='valid')[pad_2:-pad_2]\n", |
| | | "y_max_arr = np.convolve(w_2 / w_2.sum(), yb, mode='valid')[pad_2:-pad_2]\n", |
| | | "\n", |
| | | "pose_dict = {}\n", |
| | | "bbox_dict = {}\n", |
| | |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 160, |
| | | "execution_count": 201, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |