New file |
| | |
| | | import sys, os, argparse |
| | | |
| | | import numpy as np |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | | from torch.utils.data import DataLoader |
| | | from torchvision import transforms |
| | | import torch.backends.cudnn as cudnn |
| | | import torchvision |
| | | import torch.nn.functional as F |
| | | from PIL import Image |
| | | |
| | | import datasets, hopenet, utils |
| | | |
| | | from skimage import io |
| | | import dlib |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | | parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') |
| | | parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', |
| | | default=0, type=int) |
| | | parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.', |
| | | default='', type=str) |
| | | parser.add_argument('--facedetection_model', dest='facedetection_model', help='Path of DLIB face detection model.', |
| | | default='', type=str) |
| | | parser.add_argument('--video', dest='video_path', help='Path of video') |
| | | parser.add_argument('--bboxes', dest='bboxes', help='Bounding box annotations of frames') |
| | | parser.add_argument('--output_string', dest='output_string', help='String appended to output file') |
| | | parser.add_argument('--n_frames', dest='n_frames', help='Number of frames', type=int) |
| | | parser.add_argument('--fps', dest='fps', help='Frames per second of source video', type=float, default=30.) |
| | | args = parser.parse_args() |
| | | return args |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | |
| | | batch_size = 1 |
| | | gpu = args.gpu_id |
| | | snapshot_path = args.snapshot |
| | | out_dir = 'output/video' |
| | | video_path = args.video_path |
| | | |
| | | if not os.path.exists(out_dir): |
| | | os.makedirs(out_dir) |
| | | |
| | | if not os.path.exists(args.video_path): |
| | | sys.exit('Video does not exist') |
| | | |
| | | # ResNet50 structure |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | |
| | | # Dlib face detection model |
| | | cnn_face_detector = dlib.cnn_face_detection_model_v1(args.facedetection_model) |
| | | |
| | | print 'Loading snapshot.' |
| | | # Load snapshot |
| | | saved_state_dict = torch.load(snapshot_path) |
| | | model.load_state_dict(saved_state_dict) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224), |
| | | transforms.CenterCrop(224), transforms.ToTensor(), |
| | | transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) |
| | | |
| | | model.cuda(gpu) |
| | | |
| | | print 'Ready to test network.' |
| | | |
| | | # Test the Model |
| | | model.eval() # Change model to 'eval' mode (BN uses moving mean/var). |
| | | total = 0 |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | video = cv2.VideoCapture(video_path) |
| | | |
| | | # New cv2 |
| | | width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) # float |
| | | height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) # float |
| | | |
| | | # Define the codec and create VideoWriter object |
| | | fourcc = cv2.VideoWriter_fourcc(*'MJPG') |
| | | out = cv2.VideoWriter('output/video/output-%s.avi' % args.output_string, fourcc, args.fps, (width, height)) |
| | | |
| | | # # Old cv2 |
| | | # width = int(video.get(cv2.cv.CV_CAP_PROP_FRAME_WIDTH)) # float |
| | | # height = int(video.get(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT)) # float |
| | | # |
| | | # # Define the codec and create VideoWriter object |
| | | # fourcc = cv2.cv.CV_FOURCC(*'MJPG') |
| | | # out = cv2.VideoWriter('output/video/output-%s.avi' % args.output_string, fourcc, 30.0, (width, height)) |
| | | |
| | | frame_num = 1 |
| | | |
| | | while frame_num <= args.n_frames: |
| | | ret,frame = video.read() |
| | | if ret == False: |
| | | break |
| | | |
| | | cv2_frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB) |
| | | |
| | | # Dlib detect |
| | | dets = cnn_face_detector(cv2_frame, 1) |
| | | |
| | | for idx, det in enumerate(dets): |
| | | # Get x_min, y_min, x_max, y_max, conf |
| | | x_min = d.rect.left() |
| | | y_min = d.rect.top() |
| | | x_max = d.rect.right() |
| | | y_max = d.rect.bottom() |
| | | conf = d.confidence |
| | | print x_min, y_min, x_max, y_max, conf |
| | | |
| | | if conf > 0.95: |
| | | bbox_width = abs(x_max - x_min) |
| | | bbox_height = abs(y_max - y_min) |
| | | x_min -= 3 * bbox_width / 4 |
| | | x_max += 3 * bbox_width / 4 |
| | | y_min -= 3 * bbox_height / 4 |
| | | y_max += bbox_height / 4 |
| | | x_min = max(x_min, 0); y_min = max(y_min, 0) |
| | | x_max = min(frame.shape[1], x_max); y_max = min(frame.shape[0], y_max) |
| | | # Crop image |
| | | img = cv2_frame[y_min:y_max,x_min:x_max] |
| | | img = Image.fromarray(img) |
| | | |
| | | # Transform |
| | | img = transformations(img) |
| | | img_shape = img.size() |
| | | img = img.view(1, img_shape[0], img_shape[1], img_shape[2]) |
| | | img = Variable(img).cuda(gpu) |
| | | |
| | | yaw, pitch, roll = model(img) |
| | | |
| | | yaw_predicted = F.softmax(yaw) |
| | | pitch_predicted = F.softmax(pitch) |
| | | roll_predicted = F.softmax(roll) |
| | | # Get continuous predictions in degrees. |
| | | yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) * 3 - 99 |
| | | pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) * 3 - 99 |
| | | roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) * 3 - 99 |
| | | |
| | | # Print new frame with cube and axis |
| | | txt_out.write(str(frame_num) + ' %f %f %f\n' % (yaw_predicted, pitch_predicted, roll_predicted)) |
| | | # utils.plot_pose_cube(frame, yaw_predicted, pitch_predicted, roll_predicted, (x_min + x_max) / 2, (y_min + y_max) / 2, size = bbox_width) |
| | | utils.draw_axis(frame, yaw_predicted, pitch_predicted, roll_predicted, tdx = (x_min + x_max) / 2, tdy= (y_min + y_max) / 2, size = bbox_height/2) |
| | | # Plot expanded bounding box |
| | | # cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), (0,255,0), 1) |
| | | |
| | | out.write(frame) |
| | | frame_num += 1 |
| | | |
| | | out.release() |
| | | video.release() |