Training for hopenet works.
| | |
| | | |
| | | # We get the pose in radians |
| | | pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) |
| | | # And convert to positive degrees. |
| | | pose = pose * 180 / np.pi + 90 |
| | | # And convert to degrees. |
| | | pitch = pose[0] * 180 / np.pi |
| | | yaw = pose[1] * 180 / np.pi |
| | | roll = pose[2] * 180 / np.pi |
| | | # Bin values |
| | | bins = np.array(range(-99, 102, 3)) |
| | | labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) |
| | | |
| | | label = torch.FloatTensor(pose) |
| | | if self.transform is not None: |
| | | img = self.transform(img) |
| | | |
| | | return img, labels, self.X_train[index] |
| | | |
| | | def __len__(self): |
| | | # 122,450 |
| | | return self.length |
| | | |
| | | class AFLW2000_binned(Dataset): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): |
| | | self.data_dir = data_dir |
| | | self.transform = transform |
| | | self.img_ext = img_ext |
| | | self.annot_ext = annot_ext |
| | | |
| | | filename_list = get_list_from_filenames(filename_path) |
| | | |
| | | self.X_train = filename_list |
| | | self.y_train = filename_list |
| | | self.length = len(filename_list) |
| | | |
| | | def __getitem__(self, index): |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) |
| | | img = img.convert('RGB') |
| | | |
| | | # We get the pose in radians |
| | | pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) |
| | | # And convert to degrees. |
| | | pitch, yaw, roll = pose * 180 / np.pi |
| | | # Bin values |
| | | bins = np.array(range(-99, 102, 3)) |
| | | binned_pitch = torch.DoubleTensor(np.digitize(pitch, bins) - 1) |
| | | binned_yaw = torch.DoubleTensor(np.digitize(yaw, bins) - 1) |
| | | binned_roll = torch.DoubleTensor(np.digitize(roll, bins) - 1) |
| | | |
| | | label = binned_yaw, binned_pitch, binned_roll |
| | | |
| | | if self.transform is not None: |
| | | img = self.transform(img) |
| | |
| | | return img, label, self.X_train[index] |
| | | |
| | | def __len__(self): |
| | | # 122,450 |
| | | # 2,000 |
| | | return self.length |
| | | |
| | | def get_list_from_filenames(file_path): |
| | |
| | | import torch.nn as nn |
| | | import torchvision.datasets as dsets |
| | | from torch.autograd import Variable |
| | | import math |
| | | |
| | | # CNN Model (2 conv layer) |
| | | class Simple_CNN(nn.Module): |
| | |
| | | out = out.view(out.size(0), -1) |
| | | out = self.fc(out) |
| | | return out |
| | | |
| | | class Hopenet(nn.Module): |
| | | # This is just Hopenet with 3 output layers for yaw, pitch and roll. |
| | | def __init__(self, block, layers, num_bins): |
| | | self.inplanes = 64 |
| | | super(Hopenet, self).__init__() |
| | | self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
| | | bias=False) |
| | | self.bn1 = nn.BatchNorm2d(64) |
| | | self.relu = nn.ReLU(inplace=True) |
| | | self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
| | | self.layer1 = self._make_layer(block, 64, layers[0]) |
| | | self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
| | | self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
| | | self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
| | | self.avgpool = nn.AvgPool2d(7) |
| | | self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) |
| | | self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) |
| | | self.fc_roll = nn.Linear(512 * block.expansion, num_bins) |
| | | |
| | | for m in self.modules(): |
| | | if isinstance(m, nn.Conv2d): |
| | | n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
| | | m.weight.data.normal_(0, math.sqrt(2. / n)) |
| | | elif isinstance(m, nn.BatchNorm2d): |
| | | m.weight.data.fill_(1) |
| | | m.bias.data.zero_() |
| | | |
| | | def _make_layer(self, block, planes, blocks, stride=1): |
| | | downsample = None |
| | | if stride != 1 or self.inplanes != planes * block.expansion: |
| | | downsample = nn.Sequential( |
| | | nn.Conv2d(self.inplanes, planes * block.expansion, |
| | | kernel_size=1, stride=stride, bias=False), |
| | | nn.BatchNorm2d(planes * block.expansion), |
| | | ) |
| | | |
| | | layers = [] |
| | | layers.append(block(self.inplanes, planes, stride, downsample)) |
| | | self.inplanes = planes * block.expansion |
| | | for i in range(1, blocks): |
| | | layers.append(block(self.inplanes, planes)) |
| | | |
| | | return nn.Sequential(*layers) |
| | | |
| | | def forward(self, x): |
| | | x = self.conv1(x) |
| | | x = self.bn1(x) |
| | | x = self.relu(x) |
| | | x = self.maxpool(x) |
| | | |
| | | x = self.layer1(x) |
| | | x = self.layer2(x) |
| | | x = self.layer3(x) |
| | | x = self.layer4(x) |
| | | |
| | | x = self.avgpool(x) |
| | | x = x.view(x.size(0), -1) |
| | | yaw = self.fc_yaw(x) |
| | | pitch = self.fc_pitch(x) |
| | | roll = self.fc_roll(x) |
| | | |
| | | return yaw, pitch, roll |
| | |
| | | import os |
| | | import argparse |
| | | |
| | | from datasets import AFLW2000 |
| | | import datasets |
| | | import hopenet |
| | | import utils |
| | | |
| | |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), transforms.ToTensor()]) |
| | | transformations = transforms.Compose([transforms.Scale(224), |
| | | transforms.RandomCrop(224), transforms.ToTensor()]) |
| | | |
| | | pose_dataset = AFLW2000(args.data_dir, args.filename_list, |
| | | pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list, |
| | | transformations) |
| | | test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | |
| | | |
| | | # Test the Model |
| | | model.eval() # Change model to 'eval' mode (BN uses moving mean/var). |
| | | error = .0 |
| | | yaw_correct = 0 |
| | | pitch_correct = 0 |
| | | roll_correct = 0 |
| | | total = 0 |
| | | for i, (images, labels, name) in enumerate(test_loader): |
| | | images = Variable(images).cuda(gpu) |
| | |
| | | _, predicted = torch.max(outputs.data, 1) |
| | | total += labels.size(0) |
| | | # TODO: There are more efficient ways. |
| | | yaw_correct += (outputs[:][0] == labels[:][0]) |
| | | pitch_correct += (outputs[:][]) |
| | | for idx in xrange(len(outputs)): |
| | | # if abs(outputs[idx].data[1] - labels[idx].data[1]) * 180 / np.pi > 30: |
| | | print name |
| | | print abs(outputs[idx].data - labels[idx].data) * 180 / np.pi, 180 * outputs[idx].data / np.pi, labels[idx].data * 180 / np.pi |
| | | # error += utils.mse_loss(outputs[idx], labels[idx]) |
| | | error += abs(outputs[idx].data - labels[idx].data) * 180 / np.pi |
| | | yaw_correct += (outputs[idx].data[0] == labels[idx].data[0]) |
| | | pitch_correct += (outputs[idx].data[1] == labels[idx].data[1]) |
| | | roll_correct += (outputs[idx].data[2] == labels[idx].data[2]) |
| | | |
| | | |
| | | print('Test MSE error of the model on the ' + str(total) + |
| | | ' test images: %.4f' % (error / total)) |
| | | print('Test accuracies of the model on the ' + str(total) + |
| | | ' test images. Yaw: %.4f %%, Pitch: %.4f %%, Roll: %.4f %%' % (yaw_correct / total, |
| | | pitch_correct / total, roll_correct / total)) |
| | |
| | | import os |
| | | import argparse |
| | | |
| | | from datasets import Pose_300W_LP |
| | | import datasets |
| | | import hopenet |
| | | import torch.utils.model_zoo as model_zoo |
| | | |
| | | model_urls = { |
| | | 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
| | | 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
| | | 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
| | | 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
| | | 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
| | | } |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | |
| | | |
| | | return args |
| | | |
| | | def get_ignored_params(model): |
| | | # Generator function that yields ignored params. |
| | | b = [] |
| | | b.append(model.conv1) |
| | | b.append(model.bn1) |
| | | b.append(model.layer1) |
| | | b.append(model.layer2) |
| | | b.append(model.layer3) |
| | | b.append(model.layer4) |
| | | for i in range(len(b)): |
| | | for j in b[i].modules(): |
| | | for k in j.parameters(): |
| | | yield k |
| | | |
| | | def get_non_ignored_params(model): |
| | | # Generator function that yields params that will be optimized. |
| | | b = [] |
| | | b.append(model.fc_yaw) |
| | | b.append(model.fc_pitch) |
| | | b.append(model.fc_roll) |
| | | for i in range(len(b)): |
| | | for j in b[i].modules(): |
| | | for k in j.parameters(): |
| | | yield k |
| | | |
| | | def load_filtered_state_dict(model, snapshot): |
| | | # By user apaszke from discuss.pytorch.org |
| | | model_dict = model.state_dict() |
| | | # 1. filter out unnecessary keys |
| | | snapshot = {k: v for k, v in snapshot.items() if k in model_dict} |
| | | # 2. overwrite entries in the existing state dict |
| | | model_dict.update(snapshot) |
| | | # 3. load the new state dict |
| | | model.load_state_dict(model_dict) |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | |
| | | if not os.path.exists('output/snapshots'): |
| | | os.makedirs('output/snapshots') |
| | | |
| | | model = torchvision.models.resnet18(pretrained=True) |
| | | for param in model.parameters(): |
| | | param.requires_grad = False |
| | | # Parameters of newly constructed modules have requires_grad=True by default |
| | | num_ftrs = model.fc.in_features |
| | | model.fc_pitch = nn.Linear(num_ftrs, 3) |
| | | model.fc_yaw = nn.Linear(num_ftrs, 3) |
| | | model.fc_roll = nn.Linear(num_ftrs, ) |
| | | |
| | | # ResNet18 with 3 outputs. |
| | | model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet18'])) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(230),transforms.RandomCrop(224), |
| | | transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), |
| | | transforms.ToTensor()]) |
| | | |
| | | pose_dataset = Pose_300W_LP(args.data_dir, args.filename_list, |
| | | pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list, |
| | | transformations) |
| | | train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.MSELoss(size_average = True) |
| | | optimizer = torch.optim.Adam(model.fc.parameters(), lr = args.lr) |
| | | criterion = nn.CrossEntropyLoss() |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': .0}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | | |
| | | for epoch in range(num_epochs): |
| | | for i, (images, labels) in enumerate(train_loader): |
| | | for i, (images, labels, name) in enumerate(train_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | labels = Variable(labels).cuda(gpu) |
| | | label_yaw = Variable(labels[:,0]).cuda(gpu) |
| | | label_pitch = Variable(labels[:,1]).cuda(gpu) |
| | | label_roll = Variable(labels[:,2]).cuda(gpu) |
| | | |
| | | optimizer.zero_grad() |
| | | outputs = model(images) |
| | | loss = criterion(outputs, labels) |
| | | loss.backward() |
| | | yaw, pitch, roll = model(images) |
| | | loss_yaw = criterion(yaw, label_yaw) |
| | | loss_pitch = criterion(pitch, label_pitch) |
| | | loss_roll = criterion(roll, label_roll) |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss.data[0])) |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | |
| | | # Save models at even numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet18_epoch_' + str(epoch+1) + '.pkl') |
| | | 'output/snapshots/resnet18_binned_epoch_' + str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet18_epoch_' + str(epoch+1) + '.pkl') |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet18_binned_epoch_' + str(epoch+1) + '.pkl') |