| | |
| | | |
| | | import utils |
| | | |
| | | def stack_grayscale_tensor(tensor): |
| | | tensor = torch.cat([tensor, tensor, tensor], 0) |
| | | return tensor |
| | | |
| | | class Pose_300W_LP(Dataset): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): |
| | | self.data_dir = data_dir |
| | |
| | | return self.length |
| | | |
| | | class Pose_300W_LP_binned(Dataset): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): |
| | | self.data_dir = data_dir |
| | | self.transform = transform |
| | | self.img_ext = img_ext |
| | |
| | | |
| | | self.X_train = filename_list |
| | | self.y_train = filename_list |
| | | self.image_mode = image_mode |
| | | self.length = len(filename_list) |
| | | |
| | | def __getitem__(self, index): |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) |
| | | img = img.convert('RGB') |
| | | img = img.convert(self.image_mode) |
| | | mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | |
| | | # Crop the face |
| | |
| | | return self.length |
| | | |
| | | class AFLW2000_binned(Dataset): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): |
| | | def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): |
| | | self.data_dir = data_dir |
| | | self.transform = transform |
| | | self.img_ext = img_ext |
| | |
| | | |
| | | self.X_train = filename_list |
| | | self.y_train = filename_list |
| | | self.image_mode = image_mode |
| | | self.length = len(filename_list) |
| | | |
| | | def __getitem__(self, index): |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) |
| | | img = img.convert('RGB') |
| | | img = img.convert(self.image_mode) |
| | | mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | |
| | | # Crop the face |
New file |
| | |
| | | import numpy as np |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | | from torch.utils.data import DataLoader |
| | | from torchvision import transforms |
| | | import torch.backends.cudnn as cudnn |
| | | import torchvision |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import utils |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | | parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') |
| | | parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', |
| | | default=0, type=int) |
| | | parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', |
| | | default='', type=str) |
| | | parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', |
| | | default=1, type=int) |
| | | parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', |
| | | default=False, type=bool) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | | return args |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | batch_size = 1 |
| | | gpu = args.gpu_id |
| | | snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') |
| | | |
| | | # ResNet101 with 3 outputs. |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | # ResNet18 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | |
| | | print 'Loading snapshot.' |
| | | # Load snapshot |
| | | saved_state_dict = torch.load(snapshot_path) |
| | | model.load_state_dict(saved_state_dict) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224), |
| | | transforms.RandomCrop(224), transforms.ToTensor(), |
| | | transforms.Lambda(lambda x: datasets.stack_grayscale_tensor(x))]) |
| | | |
| | | pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list, |
| | | transformations, image_mode = 'L') |
| | | test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | |
| | | print 'Ready to test network.' |
| | | |
| | | # Test the Model |
| | | model.eval() # Change model to 'eval' mode (BN uses moving mean/var). |
| | | total = 0 |
| | | n_margins = 20 |
| | | yaw_correct = np.zeros(n_margins) |
| | | pitch_correct = np.zeros(n_margins) |
| | | roll_correct = np.zeros(n_margins) |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | yaw_error = .0 |
| | | pitch_error = .0 |
| | | roll_error = .0 |
| | | |
| | | for i, (images, labels, name) in enumerate(test_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | total += labels.size(0) |
| | | label_yaw = labels[:,0] |
| | | label_pitch = labels[:,1] |
| | | label_roll = labels[:,2] |
| | | |
| | | yaw, pitch, roll = model(images) |
| | | |
| | | # Binned predictions |
| | | _, yaw_bpred = torch.max(yaw.data, 1) |
| | | _, pitch_bpred = torch.max(pitch.data, 1) |
| | | _, roll_bpred = torch.max(roll.data, 1) |
| | | |
| | | yaw_predicted = F.softmax(yaw) |
| | | pitch_predicted = F.softmax(pitch) |
| | | roll_predicted = F.softmax(roll) |
| | | |
| | | # Continuous predictions |
| | | yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) |
| | | pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) |
| | | roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) |
| | | |
| | | # Mean absolute error |
| | | yaw_error += abs(yaw_predicted - label_yaw[0]) * 3 |
| | | pitch_error += abs(pitch_predicted - label_pitch[0]) * 3 |
| | | roll_error += abs(roll_predicted - label_roll[0]) * 3 |
| | | |
| | | # Binned Accuracy |
| | | # for er in xrange(n_margins): |
| | | # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) |
| | | # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) |
| | | # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) |
| | | |
| | | # print label_yaw[0], yaw_bpred[0,0] |
| | | |
| | | # Save images with pose cube. |
| | | if args.save_viz: |
| | | name = name[0] |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) |
| | | #print os.path.join('output/images', name + '.jpg') |
| | | #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 |
| | | #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |
| | | ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, |
| | | pitch_error / total, roll_error / total)) |
| | | |
| | | # Binned accuracy |
| | | # for idx in xrange(len(yaw_correct)): |
| | | # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total |
New file |
| | |
| | | import numpy as np |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | | from torch.utils.data import DataLoader |
| | | from torchvision import transforms |
| | | import torchvision |
| | | import torch.backends.cudnn as cudnn |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import torch.utils.model_zoo as model_zoo |
| | | |
| | | model_urls = { |
| | | 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
| | | 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
| | | 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
| | | 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
| | | 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
| | | } |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | | parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') |
| | | parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', |
| | | default=0, type=int) |
| | | parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', |
| | | default=5, type=int) |
| | | parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', |
| | | default=16, type=int) |
| | | parser.add_argument('--lr', dest='lr', help='Base learning rate.', |
| | | default=0.001, type=float) |
| | | parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | | return args |
| | | |
| | | def get_ignored_params(model): |
| | | # Generator function that yields ignored params. |
| | | b = [] |
| | | b.append(model.conv1) |
| | | b.append(model.bn1) |
| | | b.append(model.layer1) |
| | | b.append(model.layer2) |
| | | b.append(model.layer3) |
| | | b.append(model.layer4) |
| | | for i in range(len(b)): |
| | | for j in b[i].modules(): |
| | | for k in j.parameters(): |
| | | yield k |
| | | |
| | | def get_non_ignored_params(model): |
| | | # Generator function that yields params that will be optimized. |
| | | b = [] |
| | | b.append(model.fc_yaw) |
| | | b.append(model.fc_pitch) |
| | | b.append(model.fc_roll) |
| | | for i in range(len(b)): |
| | | for j in b[i].modules(): |
| | | for k in j.parameters(): |
| | | yield k |
| | | |
| | | def load_filtered_state_dict(model, snapshot): |
| | | # By user apaszke from discuss.pytorch.org |
| | | model_dict = model.state_dict() |
| | | # 1. filter out unnecessary keys |
| | | snapshot = {k: v for k, v in snapshot.items() if k in model_dict} |
| | | # 2. overwrite entries in the existing state dict |
| | | model_dict.update(snapshot) |
| | | # 3. load the new state dict |
| | | model.load_state_dict(model_dict) |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | num_epochs = args.num_epochs |
| | | batch_size = args.batch_size |
| | | gpu = args.gpu_id |
| | | |
| | | if not os.path.exists('output/snapshots'): |
| | | os.makedirs('output/snapshots') |
| | | |
| | | # ResNet101 with 3 outputs |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | # ResNet18 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet18'])) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), |
| | | transforms.ToTensor(), transforms.Lambda(lambda x: datasets.stack_grayscale_tensor(x))]) |
| | | |
| | | pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list, |
| | | transformations, image_mode='L') |
| | | train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | | shuffle=True, |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.CrossEntropyLoss() |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | lr = args.lr) |
| | | # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | # lr = args.lr, momentum=0.9) |
| | | # optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | # {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | # lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | | |
| | | for epoch in range(num_epochs): |
| | | for i, (images, labels, name) in enumerate(train_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | label_yaw = Variable(labels[:,0]).cuda(gpu) |
| | | label_pitch = Variable(labels[:,1]).cuda(gpu) |
| | | label_roll = Variable(labels[:,2]).cuda(gpu) |
| | | |
| | | optimizer.zero_grad() |
| | | yaw, pitch, roll = model(images) |
| | | loss_yaw = criterion(yaw, label_yaw) |
| | | loss_pitch = criterion(pitch, label_pitch) |
| | | loss_roll = criterion(roll, label_roll) |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | # if (i+1) % 10000 and epoch == 0: |
| | | # torch.save(model.state_dict(), 'output/snapshots/resnet18_cr_gray_iter_' + str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet18_cr_gray_epoch_'+ str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet18_cr_gray_epoch_' + str(epoch+1) + '.pkl') |
| | |
| | | import math |
| | | from math import cos, sin |
| | | |
| | | def get_pose_params_from_mat(mat_path): |
| | | # This functions gets the pose parameters from the .mat |
| | | # Annotations that come with the 300W_LP dataset. |
| | | mat = sio.loadmat(mat_path) |
| | | # [pitch yaw roll tdx tdy tdz scale_factor] |
| | | pre_pose_params = mat['Pose_Para'][0] |
| | | # Get [pitch, yaw, roll, tdx, tdy] |
| | | pose_params = pre_pose_params[:5] |
| | | return pose_params |
| | | |
| | | def get_ypr_from_mat(mat_path): |
| | | # Get yaw, pitch, roll from .mat annotation. |
| | | # They are in radians |
| | | mat = sio.loadmat(mat_path) |
| | | # [pitch yaw roll tdx tdy tdz scale_factor] |
| | | pre_pose_params = mat['Pose_Para'][0] |
| | | # Get [pitch, yaw, roll] |
| | | pose_params = pre_pose_params[:3] |
| | | return pose_params |
| | | |
| | | def get_pt2d_from_mat(mat_path): |
| | | # Get 2D landmarks |
| | | mat = sio.loadmat(mat_path) |
| | | pt2d = mat['pt2d'] |
| | | return pt2d |
| | | |
| | | def mse_loss(input, target): |
| | | return torch.sum(torch.abs(input.data - target.data) ** 2) |
| | | |
| | | def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.): |
| | | # Input is a cv2 image |
| | | # pose_params: (pitch, yaw, roll, tdx, tdy) |
| | |
| | | cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2) |
| | | |
| | | return img |
| | | |
| | | def get_pose_params_from_mat(mat_path): |
| | | # This functions gets the pose parameters from the .mat |
| | | # Annotations that come with the 300W_LP dataset. |
| | | mat = sio.loadmat(mat_path) |
| | | # [pitch yaw roll tdx tdy tdz scale_factor] |
| | | pre_pose_params = mat['Pose_Para'][0] |
| | | # Get [pitch, yaw, roll, tdx, tdy] |
| | | pose_params = pre_pose_params[:5] |
| | | return pose_params |
| | | |
| | | def get_ypr_from_mat(mat_path): |
| | | # Get yaw, pitch, roll from .mat annotation. |
| | | # They are in radians |
| | | mat = sio.loadmat(mat_path) |
| | | # [pitch yaw roll tdx tdy tdz scale_factor] |
| | | pre_pose_params = mat['Pose_Para'][0] |
| | | # Get [pitch, yaw, roll] |
| | | pose_params = pre_pose_params[:3] |
| | | return pose_params |
| | | |
| | | def get_pt2d_from_mat(mat_path): |
| | | # Get 2D landmarks |
| | | mat = sio.loadmat(mat_path) |
| | | pt2d = mat['pt2d'] |
| | | return pt2d |
| | | |
| | | def mse_loss(input, target): |
| | | return torch.sum(torch.abs(input.data - target.data) ** 2) |