Random downsample experiment
| | |
| | | yaw = pose[1] * 180 / np.pi |
| | | roll = pose[2] * 180 / np.pi |
| | | |
| | | rnd = np.random.random_sample() |
| | | if rnd < 0.5: |
| | | ds = 10 |
| | | original_size = img.size |
| | | img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) |
| | | img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) |
| | | ds = np.random.randint(1,11) |
| | | original_size = img.size |
| | | img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) |
| | | img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) |
| | | |
| | | # Flip? |
| | | rnd = np.random.random_sample() |
| | |
| | | preangles = torch.cat([yaw, pitch, roll], 1) |
| | | angles.append(preangles) |
| | | |
| | | return pre_yaw, pre_pitch, pre_roll, angles, sr_output |
| | | return pre_yaw, pre_pitch, pre_roll, angles, sr_y |
| | | |
| | | class Hopenet_new(nn.Module): |
| | | # This is just Hopenet with 3 output layers for yaw, pitch and roll. |
| | |
| | | |
| | | if args.dataset == 'Pose_300W_LP': |
| | | pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) |
| | | if args.dataset == 'Pose_300W_LP_random_ds': |
| | | elif args.dataset == 'Pose_300W_LP_random_ds': |
| | | pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW2000': |
| | | pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) |