natanielruiz
2017-07-07 93a4f337f2fd0280634024d2ff15790831813bed
Resnet50, and changed test error
3个文件已修改
97 ■■■■■ 已修改文件
code/datasets.py 12 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
code/test_resnet_bins.py 67 ●●●● 补丁 | 查看 | 原始文档 | blame | 历史
code/train_resnet_bins.py 18 ●●●● 补丁 | 查看 | 原始文档 | blame | 历史
code/datasets.py
@@ -121,19 +121,17 @@
        # We get the pose in radians
        pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
        # And convert to degrees.
        pitch, yaw, roll = pose * 180 / np.pi
        pitch = pose[0] * 180 / np.pi
        yaw = pose[1] * 180 / np.pi
        roll = pose[2] * 180 / np.pi
        # Bin values
        bins = np.array(range(-99, 102, 3))
        binned_pitch = torch.DoubleTensor(np.digitize(pitch, bins) - 1)
        binned_yaw = torch.DoubleTensor(np.digitize(yaw, bins) - 1)
        binned_roll = torch.DoubleTensor(np.digitize(roll, bins) - 1)
        label = binned_yaw, binned_pitch, binned_roll
        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
        if self.transform is not None:
            img = self.transform(img)
        return img, label, self.X_train[index]
        return img, labels, self.X_train[index]
    def __len__(self):
        # 2,000
code/test_resnet_bins.py
@@ -6,6 +6,7 @@
from torchvision import transforms
import torch.backends.cudnn as cudnn
import torchvision
import torch.nn.functional as F
import cv2
import matplotlib.pyplot as plt
@@ -43,10 +44,8 @@
    gpu = args.gpu_id
    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
    model = torchvision.models.resnet18()
    # Parameters of newly constructed modules have requires_grad=True by default
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 3)
    # ResNet50 with 3 outputs.
    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
    print 'Loading snapshot.'
    # Load snapshot
@@ -70,25 +69,53 @@
    # Test the Model
    model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
    yaw_correct = 0
    pitch_correct = 0
    roll_correct = 0
    total = 0
    n_margins = 20
    yaw_correct = np.zeros(n_margins)
    pitch_correct = np.zeros(n_margins)
    roll_correct = np.zeros(n_margins)
    idx_tensor = [idx for idx in xrange(66)]
    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
    yaw_error = .0
    pitch_error = .0
    roll_error = .0
    for i, (images, labels, name) in enumerate(test_loader):
        images = Variable(images).cuda(gpu)
        labels = Variable(labels).cuda(gpu)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        # TODO: There are more efficient ways.
        yaw_correct += (outputs[:][0] == labels[:][0])
        pitch_correct += (outputs[:][])
        for idx in xrange(len(outputs)):
            yaw_correct += (outputs[idx].data[0] == labels[idx].data[0])
            pitch_correct += (outputs[idx].data[1] == labels[idx].data[1])
            roll_correct += (outputs[idx].data[2] == labels[idx].data[2])
        label_yaw = labels[:,0]
        label_pitch = labels[:,1]
        label_roll = labels[:,2]
        yaw, pitch, roll = model(images)
        # _, yaw_predicted = torch.max(yaw.data, 1)
        # _, pitch_predicted = torch.max(pitch.data, 1)
        # _, roll_predicted = torch.max(roll.data, 1)
    print('Test accuracies of the model on the ' + str(total) +
    ' test images. Yaw: %.4f %%, Pitch: %.4f %%, Roll: %.4f %%' % (yaw_correct / total,
    pitch_correct / total, roll_correct / total))
        yaw_predicted = F.softmax(yaw)
        pitch_predicted = F.softmax(pitch)
        roll_predicted = F.softmax(roll)
        yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor)
        pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor)
        roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor)
        yaw_error += abs(yaw_predicted - label_yaw[0]) * 3
        pitch_error += abs(pitch_predicted - label_pitch[0]) * 3
        roll_error += abs(roll_predicted - label_roll[0]) * 3
        # for er in xrange(0,n_margins):
        #     yaw_correct[er] += (label_yaw[0] in range(yaw_predicted[0,0] - er, yaw_predicted[0,0] + er + 1))
        #     pitch_correct[er] += (label_pitch[0] in range(pitch_predicted[0,0] - er, pitch_predicted[0,0] + er + 1))
        #     roll_correct[er] += (label_roll[0] in range(roll_predicted[0,0] - er, roll_predicted[0,0] + er + 1))
        # print label_yaw[0], yaw_predicted[0,0]
    # 4 -> 15
    print('Test error in degrees of the model on the ' + str(total) +
    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
    pitch_error / total, roll_error / total))
    # for idx in xrange(len(yaw_correct)):
    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total
code/train_resnet_bins.py
@@ -91,10 +91,10 @@
    if not os.path.exists('output/snapshots'):
        os.makedirs('output/snapshots')
    # ResNet18 with 3 outputs.
    model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet18']))
    # ResNet50 with 3 outputs.
    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
    load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
    print 'Loading data.'
    transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224),
@@ -109,8 +109,8 @@
    model.cuda(gpu)
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': .0},
                                  {'params': get_non_ignored_params(model), 'lr': args.lr}],
    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr},
                                  {'params': get_non_ignored_params(model), 'lr': args.lr * 10}],
                                  lr = args.lr)
    print 'Ready to train network.'
@@ -137,11 +137,11 @@
                print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
                       %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
        # Save models at even numbered epochs.
        # Save models at numbered epochs.
        if epoch % 1 == 0 and epoch < num_epochs - 1:
            print 'Taking snapshot...'
            torch.save(model.state_dict(),
            'output/snapshots/resnet18_binned_epoch_' + str(epoch+1) + '.pkl')
            'output/snapshots/resnet50_binned_epoch_' + str(epoch+1) + '.pkl')
    # Save the final Trained Model
    torch.save(model.state_dict(), 'output/snapshots/resnet18_binned_epoch_' + str(epoch+1) + '.pkl')
    torch.save(model.state_dict(), 'output/snapshots/resnet50_binned_epoch_' + str(epoch+1) + '.pkl')