Resnet50, and changed test error
| | |
| | | # We get the pose in radians |
| | | pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) |
| | | # And convert to degrees. |
| | | pitch, yaw, roll = pose * 180 / np.pi |
| | | pitch = pose[0] * 180 / np.pi |
| | | yaw = pose[1] * 180 / np.pi |
| | | roll = pose[2] * 180 / np.pi |
| | | # Bin values |
| | | bins = np.array(range(-99, 102, 3)) |
| | | binned_pitch = torch.DoubleTensor(np.digitize(pitch, bins) - 1) |
| | | binned_yaw = torch.DoubleTensor(np.digitize(yaw, bins) - 1) |
| | | binned_roll = torch.DoubleTensor(np.digitize(roll, bins) - 1) |
| | | |
| | | label = binned_yaw, binned_pitch, binned_roll |
| | | labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) |
| | | |
| | | if self.transform is not None: |
| | | img = self.transform(img) |
| | | |
| | | return img, label, self.X_train[index] |
| | | return img, labels, self.X_train[index] |
| | | |
| | | def __len__(self): |
| | | # 2,000 |
| | |
| | | from torchvision import transforms |
| | | import torch.backends.cudnn as cudnn |
| | | import torchvision |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | |
| | | gpu = args.gpu_id |
| | | snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') |
| | | |
| | | model = torchvision.models.resnet18() |
| | | # Parameters of newly constructed modules have requires_grad=True by default |
| | | num_ftrs = model.fc.in_features |
| | | model.fc = nn.Linear(num_ftrs, 3) |
| | | # ResNet50 with 3 outputs. |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | |
| | | print 'Loading snapshot.' |
| | | # Load snapshot |
| | |
| | | |
| | | # Test the Model |
| | | model.eval() # Change model to 'eval' mode (BN uses moving mean/var). |
| | | yaw_correct = 0 |
| | | pitch_correct = 0 |
| | | roll_correct = 0 |
| | | total = 0 |
| | | n_margins = 20 |
| | | yaw_correct = np.zeros(n_margins) |
| | | pitch_correct = np.zeros(n_margins) |
| | | roll_correct = np.zeros(n_margins) |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | yaw_error = .0 |
| | | pitch_error = .0 |
| | | roll_error = .0 |
| | | |
| | | for i, (images, labels, name) in enumerate(test_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | labels = Variable(labels).cuda(gpu) |
| | | outputs = model(images) |
| | | _, predicted = torch.max(outputs.data, 1) |
| | | |
| | | total += labels.size(0) |
| | | # TODO: There are more efficient ways. |
| | | yaw_correct += (outputs[:][0] == labels[:][0]) |
| | | pitch_correct += (outputs[:][]) |
| | | for idx in xrange(len(outputs)): |
| | | yaw_correct += (outputs[idx].data[0] == labels[idx].data[0]) |
| | | pitch_correct += (outputs[idx].data[1] == labels[idx].data[1]) |
| | | roll_correct += (outputs[idx].data[2] == labels[idx].data[2]) |
| | | label_yaw = labels[:,0] |
| | | label_pitch = labels[:,1] |
| | | label_roll = labels[:,2] |
| | | |
| | | yaw, pitch, roll = model(images) |
| | | # _, yaw_predicted = torch.max(yaw.data, 1) |
| | | # _, pitch_predicted = torch.max(pitch.data, 1) |
| | | # _, roll_predicted = torch.max(roll.data, 1) |
| | | |
| | | print('Test accuracies of the model on the ' + str(total) + |
| | | ' test images. Yaw: %.4f %%, Pitch: %.4f %%, Roll: %.4f %%' % (yaw_correct / total, |
| | | pitch_correct / total, roll_correct / total)) |
| | | yaw_predicted = F.softmax(yaw) |
| | | pitch_predicted = F.softmax(pitch) |
| | | roll_predicted = F.softmax(roll) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) |
| | | pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) |
| | | roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) |
| | | |
| | | yaw_error += abs(yaw_predicted - label_yaw[0]) * 3 |
| | | pitch_error += abs(pitch_predicted - label_pitch[0]) * 3 |
| | | roll_error += abs(roll_predicted - label_roll[0]) * 3 |
| | | |
| | | # for er in xrange(0,n_margins): |
| | | # yaw_correct[er] += (label_yaw[0] in range(yaw_predicted[0,0] - er, yaw_predicted[0,0] + er + 1)) |
| | | # pitch_correct[er] += (label_pitch[0] in range(pitch_predicted[0,0] - er, pitch_predicted[0,0] + er + 1)) |
| | | # roll_correct[er] += (label_roll[0] in range(roll_predicted[0,0] - er, roll_predicted[0,0] + er + 1)) |
| | | |
| | | # print label_yaw[0], yaw_predicted[0,0] |
| | | # 4 -> 15 |
| | | print('Test error in degrees of the model on the ' + str(total) + |
| | | ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, |
| | | pitch_error / total, roll_error / total)) |
| | | # for idx in xrange(len(yaw_correct)): |
| | | # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total |
| | |
| | | if not os.path.exists('output/snapshots'): |
| | | os.makedirs('output/snapshots') |
| | | |
| | | # ResNet18 with 3 outputs. |
| | | model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet18'])) |
| | | |
| | | # ResNet50 with 3 outputs. |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), |
| | |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.CrossEntropyLoss() |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': .0}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr}], |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], |
| | | lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | |
| | | # Save models at even numbered epochs. |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet18_binned_epoch_' + str(epoch+1) + '.pkl') |
| | | 'output/snapshots/resnet50_binned_epoch_' + str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet18_binned_epoch_' + str(epoch+1) + '.pkl') |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_binned_epoch_' + str(epoch+1) + '.pkl') |