| | |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) |
| | | img = img.convert(self.image_mode) |
| | | mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') |
| | | |
| | | # Crop the face loosely |
| | | pt2d = utils.get_pt2d_from_mat(mat_path) |
| | |
| | | bins = np.array(range(-99, 102, 3)) |
| | | binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 |
| | | |
| | | # Get shape |
| | | shape = np.load(shape_path) |
| | | |
| | | # Get target tensors |
| | | labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) |
| | | labels = binned_pose |
| | | cont_labels = torch.FloatTensor([yaw, pitch, roll]) |
| | | |
| | | if self.transform is not None: |
| | |
| | | img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) |
| | | img = img.convert(self.image_mode) |
| | | mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) |
| | | shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') |
| | | |
| | | # Crop the face loosely |
| | | pt2d = utils.get_pt2d_from_mat(mat_path) |
| | |
| | | bins = np.array(range(-99, 102, 3)) |
| | | binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 |
| | | |
| | | # Get shape |
| | | shape = np.load(shape_path) |
| | | |
| | | # Get target tensors |
| | | labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) |
| | | labels = binned_pose |
| | | cont_labels = torch.FloatTensor([yaw, pitch, roll]) |
| | | |
| | | if self.transform is not None: |