| | |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | parser.add_argument('--finetune', dest='finetune', help='Boolean: finetune or from Imagenet pretrain.', |
| | | default=False, type=bool) |
| | | parser.add_argument('--snapshot', dest='snapshot', help='Path to finetune snapshot.', |
| | | default='', type=str) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | |
| | | transformations = transforms.Compose([transforms.Scale(224),transforms.RandomCrop(224), |
| | | transforms.ToTensor()]) |
| | | |
| | | pose_dataset = datasets.Pose_300W_LP_binned(args.data_dir, args.filename_list, |
| | | pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, |
| | | transformations) |
| | | train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | criterion = nn.CrossEntropyLoss().cuda() |
| | | reg_criterion = nn.MSELoss().cuda() |
| | | criterion = nn.CrossEntropyLoss().cuda(gpu) |
| | | reg_criterion = nn.MSELoss().cuda(gpu) |
| | | # Regression loss coefficient |
| | | alpha = 0.01 |
| | | alpha = 0.1 |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | |
| | | label_roll = Variable(labels[:,2].cuda(gpu)) |
| | | |
| | | optimizer.zero_grad() |
| | | model.zero_grad() |
| | | |
| | | yaw, pitch, roll = model(images) |
| | | |
| | |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | if epoch == 0: |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_AFW_iter_'+ str(i+1) + '.pkl') |
| | | 'output/snapshots/resnet50_AFLW_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/resnet50_AFW_epoch_'+ str(epoch+1) + '.pkl') |
| | | 'output/snapshots/resnet50_AFLW_epoch_'+ str(epoch+1) + '.pkl') |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/resnet50_AFLW_epoch' + str(epoch+1) + '.pkl') |
New file |
| | |
| | | { |
| | | "cells": [ |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": null, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 2, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [ |
| | | "AFLW2000 = '/Data/nruiz9/data/facial_landmarks/AFLW2000/'\n", |
| | | "AFLW = '/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped/'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 3, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [ |
| | | "list_2000 = '/Data/nruiz9/data/facial_landmarks/AFLW2000/filename_list_filtered.txt'\n", |
| | | "list_normal = '/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped/filename_list.txt'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 5, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "1969\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "fid = open(list_2000, 'r')\n", |
| | | "dict_2000 = dict()\n", |
| | | "for line in fid:\n", |
| | | " line = line.strip('\\n').split('/')\n", |
| | | " dict_2000[line[-1]] = 1\n", |
| | | "print len(dict_2000)\n", |
| | | "fid.close()" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 6, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "1966 19109\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "fid = open(list_normal, 'r')\n", |
| | | "naked = list_normal.strip('.txt')\n", |
| | | "train = open(naked + '_train.txt', 'wb')\n", |
| | | "test = open(naked + '_test.txt', 'wb')\n", |
| | | "test_dict = dict()\n", |
| | | "train_dict = dict()\n", |
| | | "for line in fid:\n", |
| | | " line = line.strip('\\n')\n", |
| | | " name = line.split('/')[-1]\n", |
| | | " if name in dict_2000.keys():\n", |
| | | " test.write(line + '\\n')\n", |
| | | " test_dict[line] = 1\n", |
| | | " else:\n", |
| | | " train.write(line + '\\n')\n", |
| | | " train_dict[line] = 1\n", |
| | | "\n", |
| | | "print len(test_dict), len(train_dict)" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": null, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [] |
| | | } |
| | | ], |
| | | "metadata": { |
| | | "anaconda-cloud": {}, |
| | | "kernelspec": { |
| | | "display_name": "Python [conda root]", |
| | | "language": "python", |
| | | "name": "conda-root-py" |
| | | }, |
| | | "language_info": { |
| | | "codemirror_mode": { |
| | | "name": "ipython", |
| | | "version": 2 |
| | | }, |
| | | "file_extension": ".py", |
| | | "mimetype": "text/x-python", |
| | | "name": "python", |
| | | "nbconvert_exporter": "python", |
| | | "pygments_lexer": "ipython2", |
| | | "version": "2.7.12" |
| | | } |
| | | }, |
| | | "nbformat": 4, |
| | | "nbformat_minor": 1 |
| | | } |