Batch testing and hopenet training complete
New file |
| | |
| | | import numpy as np |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | | from torch.utils.data import DataLoader |
| | | from torchvision import transforms |
| | | import torch.backends.cudnn as cudnn |
| | | import torchvision |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import utils |
| | | |
| | | import glob |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | | parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') |
| | | parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', |
| | | default=0, type=int) |
| | | parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | parser.add_argument('--snapshot_folder', dest='snapshot_folder', help='Name of model snapshot folder.', |
| | | default='', type=str) |
| | | parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', |
| | | default=1, type=int) |
| | | parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', |
| | | default=False, type=bool) |
| | | parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.', |
| | | default=1, type=int) |
| | | parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) |
| | | args = parser.parse_args() |
| | | |
| | | return args |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | gpu = args.gpu_id |
| | | |
| | | # ResNet101 with 3 outputs. |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | |
| | | print 'Loading snapshot list.' |
| | | # Load snapshot |
| | | snapshot_list = sorted(glob.glob(os.path.join(args.snapshot_folder, '*.pkl'))) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224), |
| | | transforms.RandomCrop(224), transforms.ToTensor(), |
| | | transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) |
| | | |
| | | if args.dataset == 'AFLW2000': |
| | | pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, |
| | | transformations) |
| | | elif args.dataset == 'BIWI': |
| | | pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW': |
| | | pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFW': |
| | | pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) |
| | | else: |
| | | print 'Error: not a valid dataset name' |
| | | sys.exit() |
| | | test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=args.batch_size, |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | |
| | | print 'Ready to test network.' |
| | | |
| | | prefix = args.snapshot_folder.split('/')[-1] |
| | | if prefix == '': |
| | | prefix = args.snapshot_folder.split('/')[-2] |
| | | output_file_name = prefix + '_' + args.dataset + '_angles.txt' |
| | | txt_output = open(os.path.join('output/batch_snapshots', output_file_name), 'w') |
| | | |
| | | for snapshot_path in snapshot_list: |
| | | snapshot_name = snapshot_path.split('/')[-1].split('.')[0] |
| | | print 'Loading snapshot ' + snapshot_name |
| | | |
| | | saved_state_dict = torch.load(snapshot_path) |
| | | model.load_state_dict(saved_state_dict) |
| | | |
| | | # Test the Model |
| | | model.eval() # Change model to 'eval' mode (BN uses moving mean/var). |
| | | total = 0 |
| | | n_margins = 20 |
| | | yaw_correct = np.zeros(n_margins) |
| | | pitch_correct = np.zeros(n_margins) |
| | | roll_correct = np.zeros(n_margins) |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | yaw_error = .0 |
| | | pitch_error = .0 |
| | | roll_error = .0 |
| | | |
| | | l1loss = torch.nn.L1Loss(size_average=False) |
| | | |
| | | for i, (images, labels, name) in enumerate(test_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | total += labels.size(0) |
| | | label_yaw = labels[:,0].float() |
| | | label_pitch = labels[:,1].float() |
| | | label_roll = labels[:,2].float() |
| | | |
| | | pre_yaw, pre_pitch, pre_roll, angles = model(images) |
| | | yaw = angles[args.iter_ref-1][:,0].cpu().data |
| | | pitch = angles[args.iter_ref-1][:,1].cpu().data |
| | | roll = angles[args.iter_ref-1][:,2].cpu().data |
| | | |
| | | # Mean absolute error |
| | | yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) |
| | | pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3) |
| | | roll_error += torch.sum(torch.abs(roll - label_roll) * 3) |
| | | if args.save_viz: |
| | | name = name[0] |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |
| | | ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, |
| | | pitch_error / total, roll_error / total)) |
| | | txt_output.write('Test error in degrees of model ' + snapshot_name + ' on the ' + str(total) + |
| | | ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f \n' % (yaw_error / total, |
| | | pitch_error / total, roll_error / total)) |
| | | |
| | | txt_output.close() |
New file |
| | |
| | | import numpy as np |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | | from torch.utils.data import DataLoader |
| | | from torchvision import transforms |
| | | import torch.backends.cudnn as cudnn |
| | | import torchvision |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import utils |
| | | |
| | | import glob |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | | parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') |
| | | parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', |
| | | default=0, type=int) |
| | | parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | parser.add_argument('--snapshot_folder', dest='snapshot_folder', help='Name of model snapshot folder.', |
| | | default='', type=str) |
| | | parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', |
| | | default=1, type=int) |
| | | parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', |
| | | default=False, type=bool) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | | return args |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | gpu = args.gpu_id |
| | | |
| | | # ResNet101 with 3 outputs. |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | |
| | | print 'Loading snapshot list.' |
| | | # Load snapshot |
| | | snapshot_list = sorted(glob.glob(os.path.join(args.snapshot_folder, '*.pkl'))) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | # transformations = transforms.Compose([transforms.Scale(224), |
| | | # transforms.RandomCrop(224), transforms.ToTensor()]) |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224), |
| | | transforms.RandomCrop(224), transforms.ToTensor(), |
| | | transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) |
| | | |
| | | pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, |
| | | transformations) |
| | | test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=args.batch_size, |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | |
| | | print 'Ready to test network.' |
| | | |
| | | output_file_name = args.snapshot_folder.split('/')[-1] + '_AFLW_preangles.txt' |
| | | txt_output = open(os.join('output/batch_snapshots', output_file_name), 'w') |
| | | |
| | | for snapshot_path in snapshot_list: |
| | | snapshot_name = snapshot_path.split('/')[-1].split('.')[0] |
| | | print 'Loading snapshot ' + snapshot_name |
| | | |
| | | saved_state_dict = torch.load(snapshot_path) |
| | | model.load_state_dict(saved_state_dict) |
| | | |
| | | # Test the Model |
| | | model.eval() # Change model to 'eval' mode (BN uses moving mean/var). |
| | | total = 0 |
| | | n_margins = 20 |
| | | yaw_correct = np.zeros(n_margins) |
| | | pitch_correct = np.zeros(n_margins) |
| | | roll_correct = np.zeros(n_margins) |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | yaw_error = .0 |
| | | pitch_error = .0 |
| | | roll_error = .0 |
| | | |
| | | l1loss = torch.nn.L1Loss(size_average=False) |
| | | |
| | | for i, (images, labels, name) in enumerate(test_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | total += labels.size(0) |
| | | label_yaw = labels[:,0].float() |
| | | label_pitch = labels[:,1].float() |
| | | label_roll = labels[:,2].float() |
| | | |
| | | yaw, pitch, roll, angles = model(images) |
| | | |
| | | # Binned predictions |
| | | _, yaw_bpred = torch.max(yaw.data, 1) |
| | | _, pitch_bpred = torch.max(pitch.data, 1) |
| | | _, roll_bpred = torch.max(roll.data, 1) |
| | | |
| | | # Continuous predictions |
| | | yaw_predicted = utils.softmax_temperature(yaw.data, 1) |
| | | pitch_predicted = utils.softmax_temperature(pitch.data, 1) |
| | | roll_predicted = utils.softmax_temperature(roll.data, 1) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() |
| | | pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() |
| | | |
| | | # Mean absolute error |
| | | yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) |
| | | pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) |
| | | roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) |
| | | |
| | | if args.save_viz: |
| | | name = name[0] |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |
| | | ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, |
| | | pitch_error / total, roll_error / total)) |
| | | txt_output.write('Test error in degrees of model ' + snapshot_name + ' on the ' + str(total) + |
| | | ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f \n' % (yaw_error / total, |
| | | pitch_error / total, roll_error / total)) |
| | | |
| | | txt_output.close() |
New file |
| | |
| | | import numpy as np |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | | from torch.utils.data import DataLoader |
| | | from torchvision import transforms |
| | | import torch.backends.cudnn as cudnn |
| | | import torchvision |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import utils |
| | | |
| | | import glob |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | | parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') |
| | | parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', |
| | | default=0, type=int) |
| | | parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | parser.add_argument('--snapshot_folder', dest='snapshot_folder', help='Name of model snapshot folder.', |
| | | default='', type=str) |
| | | parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', |
| | | default=1, type=int) |
| | | parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', |
| | | default=False, type=bool) |
| | | parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | | return args |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | gpu = args.gpu_id |
| | | |
| | | # ResNet101 with 3 outputs. |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | |
| | | print 'Loading snapshot list.' |
| | | # Load snapshot |
| | | snapshot_list = sorted(glob.glob(os.path.join(args.snapshot_folder, '*.pkl'))) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224), |
| | | transforms.RandomCrop(224), transforms.ToTensor(), |
| | | transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) |
| | | |
| | | if args.dataset == 'AFLW2000': |
| | | pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, |
| | | transformations) |
| | | elif args.dataset == 'BIWI': |
| | | pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFLW': |
| | | pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) |
| | | elif args.dataset == 'AFW': |
| | | pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) |
| | | else: |
| | | print 'Error: not a valid dataset name' |
| | | sys.exit() |
| | | test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=args.batch_size, |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | |
| | | print 'Ready to test network.' |
| | | |
| | | prefix = args.snapshot_folder.split('/')[-1] |
| | | if prefix == '': |
| | | prefix = args.snapshot_folder.split('/')[-2] |
| | | output_file_name = prefix + '_' + args.dataset + '_preangles.txt' |
| | | txt_output = open(os.path.join('output/batch_snapshots', output_file_name), 'w') |
| | | |
| | | for snapshot_path in snapshot_list: |
| | | snapshot_name = snapshot_path.split('/')[-1].split('.')[0] |
| | | print 'Loading snapshot ' + snapshot_name |
| | | |
| | | saved_state_dict = torch.load(snapshot_path) |
| | | model.load_state_dict(saved_state_dict) |
| | | |
| | | # Test the Model |
| | | model.eval() # Change model to 'eval' mode (BN uses moving mean/var). |
| | | total = 0 |
| | | n_margins = 20 |
| | | yaw_correct = np.zeros(n_margins) |
| | | pitch_correct = np.zeros(n_margins) |
| | | roll_correct = np.zeros(n_margins) |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | yaw_error = .0 |
| | | pitch_error = .0 |
| | | roll_error = .0 |
| | | |
| | | l1loss = torch.nn.L1Loss(size_average=False) |
| | | |
| | | for i, (images, labels, name) in enumerate(test_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | total += labels.size(0) |
| | | label_yaw = labels[:,0].float() |
| | | label_pitch = labels[:,1].float() |
| | | label_roll = labels[:,2].float() |
| | | |
| | | yaw, pitch, roll, angles = model(images) |
| | | |
| | | # Binned predictions |
| | | _, yaw_bpred = torch.max(yaw.data, 1) |
| | | _, pitch_bpred = torch.max(pitch.data, 1) |
| | | _, roll_bpred = torch.max(roll.data, 1) |
| | | |
| | | # Continuous predictions |
| | | yaw_predicted = utils.softmax_temperature(yaw.data, 1) |
| | | pitch_predicted = utils.softmax_temperature(pitch.data, 1) |
| | | roll_predicted = utils.softmax_temperature(roll.data, 1) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() |
| | | pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() |
| | | |
| | | # Mean absolute error |
| | | yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) |
| | | pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) |
| | | roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) |
| | | |
| | | if args.save_viz: |
| | | name = name[0] |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |
| | | ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, |
| | | pitch_error / total, roll_error / total)) |
| | | txt_output.write('Test error in degrees of model ' + snapshot_name + ' on the ' + str(total) + |
| | | ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f \n' % (yaw_error / total, |
| | | pitch_error / total, roll_error / total)) |
| | | |
| | | txt_output.close() |
| | |
| | | |
| | | class Hopenet(nn.Module): |
| | | # This is just Hopenet with 3 output layers for yaw, pitch and roll. |
| | | def __init__(self, block, layers, num_bins): |
| | | def __init__(self, block, layers, num_bins, iter_ref): |
| | | self.inplanes = 64 |
| | | super(Hopenet, self).__init__() |
| | | self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, |
| | |
| | | self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) |
| | | |
| | | self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() |
| | | |
| | | self.iter_ref = iter_ref |
| | | |
| | | for m in self.modules(): |
| | | if isinstance(m, nn.Conv2d): |
| | |
| | | angles = [] |
| | | angles.append(torch.cat([yaw, pitch, roll], 1)) |
| | | |
| | | for idx in xrange(1): |
| | | for idx in xrange(self.iter_ref): |
| | | angles.append(self.fc_finetune(torch.cat((angles[-1], x), 1))) |
| | | |
| | | return pre_yaw, pre_pitch, pre_roll, angles |
| | |
| | | default=1, type=int) |
| | | parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', |
| | | default=False, type=bool) |
| | | parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | |
| | | # ResNet101 with 3 outputs. |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | |
| | |
| | | label_roll = labels[:,2].float() |
| | | |
| | | pre_yaw, pre_pitch, pre_roll, angles = model(images) |
| | | yaw = angles[0][:,0].cpu().data |
| | | pitch = angles[0][:,1].cpu().data |
| | | roll = angles[0][:,2].cpu().data |
| | | yaw = angles[args.iter_ref-1][:,0].cpu().data |
| | | pitch = angles[args.iter_ref-1][:,1].cpu().data |
| | | roll = angles[args.iter_ref-1][:,2].cpu().data |
| | | |
| | | # Mean absolute error |
| | | yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) |
New file |
| | |
| | | import numpy as np |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | | from torch.utils.data import DataLoader |
| | | from torchvision import transforms |
| | | import torch.backends.cudnn as cudnn |
| | | import torchvision |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import utils |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | | parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') |
| | | parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', |
| | | default=0, type=int) |
| | | parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', |
| | | default='', type=str) |
| | | parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', |
| | | default=1, type=int) |
| | | parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', |
| | | default=False, type=bool) |
| | | |
| | | args = parser.parse_args() |
| | | |
| | | return args |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | gpu = args.gpu_id |
| | | snapshot_path = args.snapshot |
| | | |
| | | # ResNet101 with 3 outputs. |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | |
| | | print 'Loading snapshot.' |
| | | # Load snapshot |
| | | saved_state_dict = torch.load(snapshot_path) |
| | | model.load_state_dict(saved_state_dict) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | # transformations = transforms.Compose([transforms.Scale(224), |
| | | # transforms.RandomCrop(224), transforms.ToTensor()]) |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224), |
| | | transforms.CenterCrop(224), transforms.ToTensor(), |
| | | transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) |
| | | |
| | | pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, |
| | | transformations) |
| | | test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=args.batch_size, |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | |
| | | print 'Ready to test network.' |
| | | |
| | | # Test the Model |
| | | model.eval() # Change model to 'eval' mode (BN uses moving mean/var). |
| | | total = 0 |
| | | n_margins = 20 |
| | | yaw_correct = np.zeros(n_margins) |
| | | pitch_correct = np.zeros(n_margins) |
| | | roll_correct = np.zeros(n_margins) |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) |
| | | |
| | | yaw_error = .0 |
| | | pitch_error = .0 |
| | | roll_error = .0 |
| | | |
| | | l1loss = torch.nn.L1Loss(size_average=False) |
| | | |
| | | for i, (images, labels, name) in enumerate(test_loader): |
| | | images = Variable(images).cuda(gpu) |
| | | total += labels.size(0) |
| | | label_yaw = labels[:,0].float() |
| | | label_pitch = labels[:,1].float() |
| | | label_roll = labels[:,2].float() |
| | | |
| | | yaw, pitch, roll, angles = model(images) |
| | | |
| | | # Binned predictions |
| | | _, yaw_bpred = torch.max(yaw.data, 1) |
| | | _, pitch_bpred = torch.max(pitch.data, 1) |
| | | _, roll_bpred = torch.max(roll.data, 1) |
| | | |
| | | # Continuous predictions |
| | | yaw_predicted = utils.softmax_temperature(yaw.data, 1) |
| | | pitch_predicted = utils.softmax_temperature(pitch.data, 1) |
| | | roll_predicted = utils.softmax_temperature(roll.data, 1) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() |
| | | pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() |
| | | |
| | | # Mean absolute error |
| | | yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) |
| | | pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) |
| | | roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) |
| | | |
| | | # Binned Accuracy |
| | | # for er in xrange(n_margins): |
| | | # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) |
| | | # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) |
| | | # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) |
| | | |
| | | # print label_yaw[0], yaw_bpred[0,0] |
| | | |
| | | # Save images with pose cube. |
| | | # TODO: fix for larger batch size |
| | | if args.save_viz: |
| | | name = name[0] |
| | | cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) |
| | | #print os.path.join('output/images', name + '.jpg') |
| | | #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 |
| | | #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 |
| | | utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) |
| | | cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) |
| | | |
| | | print('Test error in degrees of the model on the ' + str(total) + |
| | | ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, |
| | | pitch_error / total, roll_error / total)) |
| | | |
| | | # Binned accuracy |
| | | # for idx in xrange(len(yaw_correct)): |
| | | # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total |
| | |
| | | img_shape = img.size() |
| | | img = img.view(1, img_shape[0], img_shape[1], img_shape[2]) |
| | | img = Variable(img).cuda(gpu) |
| | | yaw, pitch, roll = model(img) |
| | | yaw, pitch, roll, angles = model(img) |
| | | |
| | | yaw_predicted = F.softmax(yaw) |
| | | pitch_predicted = F.softmax(pitch) |
| | |
| | | parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) |
| | | parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', |
| | | default=0.001, type=float) |
| | | parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.', |
| | | default=1, type=int) |
| | | args = parser.parse_args() |
| | | return args |
| | | |
| | |
| | | # ResNet101 with 3 outputs |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) |
| | |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) |
| | | loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) |
| | | |
| | | # print yaw_predicted, label_yaw.float(), loss_reg_yaw |
| | | # Total loss |
| | | loss_yaw += alpha * loss_reg_yaw |
| | | loss_pitch += alpha * loss_reg_pitch |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | |
| | | pitch_predicted = softmax(pre_pitch) |
| | | roll_predicted = softmax(pre_roll) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) |
| | | pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) |
| | | roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) |
| | | yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) |
| | | pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) |
| | | |
| | | loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) |
| | |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | # Finetuning loss |
| | | loss_angles = reg_criterion(angles[0], label_angles.float()) |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | for idx in xrange(args.iter_ref): |
| | | loss_angles = reg_criterion(angles[idx], label_angles.float()) |
| | | loss_seq.append(loss_angles) |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | |
| | | # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs_ft - 1: |
| | | if epoch % 1 == 0 and epoch < num_epochs_ft: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') |
| | | |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl') |
New file |
| | |
| | | import numpy as np |
| | | import torch |
| | | import torch.nn as nn |
| | | from torch.autograd import Variable |
| | | from torch.utils.data import DataLoader |
| | | from torchvision import transforms |
| | | import torchvision |
| | | import torch.backends.cudnn as cudnn |
| | | import torch.nn.functional as F |
| | | |
| | | import cv2 |
| | | import matplotlib.pyplot as plt |
| | | import sys |
| | | import os |
| | | import argparse |
| | | |
| | | import datasets |
| | | import hopenet |
| | | import torch.utils.model_zoo as model_zoo |
| | | |
| | | model_urls = { |
| | | 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
| | | 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
| | | 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
| | | 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
| | | 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
| | | } |
| | | |
| | | def parse_args(): |
| | | """Parse input arguments.""" |
| | | parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') |
| | | parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', |
| | | default=0, type=int) |
| | | parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', |
| | | default=5, type=int) |
| | | parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.', |
| | | default=5, type=int) |
| | | parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', |
| | | default=16, type=int) |
| | | parser.add_argument('--lr', dest='lr', help='Base learning rate.', |
| | | default=0.001, type=float) |
| | | parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', |
| | | default='', type=str) |
| | | parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', |
| | | default='', type=str) |
| | | parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) |
| | | parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', |
| | | default=0.00, type=float) |
| | | args = parser.parse_args() |
| | | return args |
| | | |
| | | def get_ignored_params(model): |
| | | # Generator function that yields ignored params. |
| | | b = [] |
| | | b.append(model.conv1) |
| | | b.append(model.bn1) |
| | | b.append(model.fc_finetune) |
| | | for i in range(len(b)): |
| | | for module_name, module in b[i].named_modules(): |
| | | if 'bn' in module_name: |
| | | module.eval() |
| | | for name, param in module.named_parameters(): |
| | | yield param |
| | | |
| | | def get_non_ignored_params(model): |
| | | # Generator function that yields params that will be optimized. |
| | | b = [] |
| | | b.append(model.layer1) |
| | | b.append(model.layer2) |
| | | b.append(model.layer3) |
| | | b.append(model.layer4) |
| | | for i in range(len(b)): |
| | | for module_name, module in b[i].named_modules(): |
| | | if 'bn' in module_name: |
| | | module.eval() |
| | | for name, param in module.named_parameters(): |
| | | yield param |
| | | |
| | | def get_fc_params(model): |
| | | b = [] |
| | | b.append(model.fc_yaw) |
| | | b.append(model.fc_pitch) |
| | | b.append(model.fc_roll) |
| | | for i in range(len(b)): |
| | | for module_name, module in b[i].named_modules(): |
| | | for name, param in module.named_parameters(): |
| | | yield param |
| | | |
| | | def load_filtered_state_dict(model, snapshot): |
| | | # By user apaszke from discuss.pytorch.org |
| | | model_dict = model.state_dict() |
| | | # 1. filter out unnecessary keys |
| | | snapshot = {k: v for k, v in snapshot.items() if k in model_dict} |
| | | # 2. overwrite entries in the existing state dict |
| | | model_dict.update(snapshot) |
| | | # 3. load the new state dict |
| | | model.load_state_dict(model_dict) |
| | | |
| | | if __name__ == '__main__': |
| | | args = parse_args() |
| | | |
| | | cudnn.enabled = True |
| | | num_epochs = args.num_epochs |
| | | num_epochs_ft = args.num_epochs_ft |
| | | batch_size = args.batch_size |
| | | gpu = args.gpu_id |
| | | |
| | | if not os.path.exists('output/snapshots'): |
| | | os.makedirs('output/snapshots') |
| | | |
| | | # ResNet101 with 3 outputs |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) |
| | | # ResNet50 |
| | | model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) |
| | | # ResNet18 |
| | | # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) |
| | | load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) |
| | | |
| | | print 'Loading data.' |
| | | |
| | | transformations = transforms.Compose([transforms.Scale(224), |
| | | transforms.RandomCrop(224), transforms.ToTensor(), |
| | | transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) |
| | | |
| | | pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, |
| | | transformations) |
| | | train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, |
| | | batch_size=batch_size, |
| | | shuffle=True, |
| | | num_workers=2) |
| | | |
| | | model.cuda(gpu) |
| | | softmax = nn.Softmax() |
| | | criterion = nn.CrossEntropyLoss().cuda(gpu) |
| | | reg_criterion = nn.MSELoss().cuda(gpu) |
| | | # Regression loss coefficient |
| | | alpha = args.alpha |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) |
| | | |
| | | optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, |
| | | {'params': get_non_ignored_params(model), 'lr': args.lr}, |
| | | {'params': get_fc_params(model), 'lr': args.lr * 2}], |
| | | lr = args.lr) |
| | | |
| | | print 'Ready to train network.' |
| | | |
| | | print 'First phase of training.' |
| | | for epoch in range(num_epochs): |
| | | for i, (images, labels, name) in enumerate(train_loader): |
| | | images = Variable(images.cuda(gpu)) |
| | | label_yaw = Variable(labels[:,0].cuda(gpu)) |
| | | label_pitch = Variable(labels[:,1].cuda(gpu)) |
| | | label_roll = Variable(labels[:,2].cuda(gpu)) |
| | | |
| | | optimizer.zero_grad() |
| | | model.zero_grad() |
| | | |
| | | pre_yaw, pre_pitch, pre_roll, angles = model(images) |
| | | |
| | | # Cross entropy loss |
| | | loss_yaw = criterion(pre_yaw, label_yaw) |
| | | loss_pitch = criterion(pre_pitch, label_pitch) |
| | | loss_roll = criterion(pre_roll, label_roll) |
| | | |
| | | # MSE loss |
| | | yaw_predicted = softmax(pre_yaw) |
| | | pitch_predicted = softmax(pre_pitch) |
| | | roll_predicted = softmax(pre_roll) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) |
| | | pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) |
| | | roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) |
| | | |
| | | loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) |
| | | loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) |
| | | |
| | | # print yaw_predicted, label_yaw.float(), loss_reg_yaw |
| | | # Total loss |
| | | loss_yaw += alpha * loss_reg_yaw |
| | | loss_pitch += alpha * loss_reg_pitch |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' |
| | | %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) |
| | | # if epoch == 0: |
| | | # torch.save(model.state_dict(), |
| | | # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') |
| | | |
| | | print 'Second phase of training (finetuning layer).' |
| | | for epoch in range(num_epochs_ft): |
| | | for i, (images, labels, name) in enumerate(train_loader): |
| | | images = Variable(images.cuda(gpu)) |
| | | label_yaw = Variable(labels[:,0].cuda(gpu)) |
| | | label_pitch = Variable(labels[:,1].cuda(gpu)) |
| | | label_roll = Variable(labels[:,2].cuda(gpu)) |
| | | label_angles = Variable(labels[:,:3].cuda(gpu)) |
| | | |
| | | optimizer.zero_grad() |
| | | model.zero_grad() |
| | | |
| | | pre_yaw, pre_pitch, pre_roll, angles = model(images) |
| | | |
| | | # Cross entropy loss |
| | | loss_yaw = criterion(pre_yaw, label_yaw) |
| | | loss_pitch = criterion(pre_pitch, label_pitch) |
| | | loss_roll = criterion(pre_roll, label_roll) |
| | | |
| | | # MSE loss |
| | | yaw_predicted = softmax(pre_yaw) |
| | | pitch_predicted = softmax(pre_pitch) |
| | | roll_predicted = softmax(pre_roll) |
| | | |
| | | yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) |
| | | pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) |
| | | roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) |
| | | |
| | | loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) |
| | | loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) |
| | | loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) |
| | | |
| | | # Total loss |
| | | loss_yaw += alpha * loss_reg_yaw |
| | | loss_pitch += alpha * loss_reg_pitch |
| | | loss_roll += alpha * loss_reg_roll |
| | | |
| | | # Finetuning loss |
| | | loss_angles = reg_criterion(angles[0], label_angles.float()) |
| | | |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] |
| | | grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] |
| | | torch.autograd.backward(loss_seq, grad_seq) |
| | | optimizer.step() |
| | | |
| | | if (i+1) % 100 == 0: |
| | | print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f' |
| | | %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) |
| | | # if epoch == 0: |
| | | # torch.save(model.state_dict(), |
| | | # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') |
| | | |
| | | # Save models at numbered epochs. |
| | | if epoch % 1 == 0 and epoch < num_epochs_ft - 1: |
| | | print 'Taking snapshot...' |
| | | torch.save(model.state_dict(), |
| | | 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') |
| | | |
| | | |
| | | # Save the final Trained Model |
| | | torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl') |
| | |
| | | criterion = nn.CrossEntropyLoss().cuda() |
| | | reg_criterion = nn.MSELoss().cuda() |
| | | # Regression loss coefficient |
| | | alpha = 0.00 |
| | | alpha = args.alpha |
| | | |
| | | idx_tensor = [idx for idx in xrange(66)] |
| | | idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) |