| | |
| | | label_roll = labels[:,2].float() |
| | | |
| | | pre_yaw, pre_pitch, pre_roll, angles = model(images) |
| | | yaw = angles[args.iter_ref-1][:,0].cpu().data |
| | | pitch = angles[args.iter_ref-1][:,1].cpu().data |
| | | roll = angles[args.iter_ref-1][:,2].cpu().data |
| | | yaw = angles[args.iter_ref][:,0].cpu().data |
| | | pitch = angles[args.iter_ref][:,1].cpu().data |
| | | roll = angles[args.iter_ref][:,2].cpu().data |
| | | |
| | | # Mean absolute error |
| | | yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) |
| | |
| | | label_roll = labels[:,2].float() |
| | | |
| | | pre_yaw, pre_pitch, pre_roll, angles = model(images) |
| | | yaw = angles[args.iter_ref-1][:,0].cpu().data |
| | | pitch = angles[args.iter_ref-1][:,1].cpu().data |
| | | roll = angles[args.iter_ref-1][:,2].cpu().data |
| | | yaw = angles[args.iter_ref][:,0].cpu().data |
| | | pitch = angles[args.iter_ref][:,1].cpu().data |
| | | roll = angles[args.iter_ref][:,2].cpu().data |
| | | |
| | | # Mean absolute error |
| | | print yaw.numpy(), label_yaw.numpy() |
| | | yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) |
| | | pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3) |
| | | roll_error += torch.sum(torch.abs(roll - label_roll) * 3) |
| | |
| | | |
| | | # Finetuning loss |
| | | loss_seq = [loss_yaw, loss_pitch, loss_roll] |
| | | for idx in xrange(args.iter_ref): |
| | | for idx in xrange(args.iter_ref+1): |
| | | loss_angles = reg_criterion(angles[idx], label_angles.float()) |
| | | loss_seq.append(loss_angles) |
| | | |
| | |
| | | "cells": [ |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 6, |
| | | "execution_count": 1, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 7, |
| | | "execution_count": 2, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 8, |
| | | "execution_count": 4, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "ename": "KeyboardInterrupt", |
| | | "evalue": "", |
| | | "output_type": "error", |
| | | "traceback": [ |
| | | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| | | "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", |
| | | "\u001b[0;32m<ipython-input-8-1f2606c2a679>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 34\u001b[0m \u001b[0;32mif\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misfile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_path\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[0;31m#image = cv2.imread(input_path, 0) #load in grayscale\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 36\u001b[0;31m \u001b[0mimage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcv2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 37\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 38\u001b[0m \u001b[0;31m#Image dimensions\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| | | "\u001b[0;31mKeyboardInterrupt\u001b[0m: " |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "Done\n" |
| | | ] |
| | | } |
| | | ], |
| | |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": null, |
| | | "execution_count": 5, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [], |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "test\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "print 'test'" |
| | | ] |
New file |
| | |
| | | { |
| | | "cells": [ |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 2, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [ |
| | | "%matplotlib inline\n", |
| | | "import numpy as np\n", |
| | | "import torch\n", |
| | | "from torch.utils.serialization import load_lua\n", |
| | | "import os\n", |
| | | "import scipy.io as sio\n", |
| | | "import cv2\n", |
| | | "import math\n", |
| | | "from matplotlib import pyplot as plt\n", |
| | | "\n", |
| | | "import sqlite3" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 3, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [ |
| | | "#Change this paths according to your directories\n", |
| | | "images_path = \"/Data/nruiz9/data/facial_landmarks/AFLW/aflw/data/flickr/\"\n", |
| | | "storing_path = \"/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped_loose/\"" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 20, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "(573, 1)\n", |
| | | "(232, 1)\n", |
| | | "(165, 1)\n", |
| | | "3\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "#Load KEPLER split file\n", |
| | | "test_set = sio.loadmat('/Data/nruiz9/data/facial_landmarks/AFLW/testset.mat')\n", |
| | | "print test_set['test'][0][0][0].shape\n", |
| | | "print test_set['test'][0][0][1].shape\n", |
| | | "print test_set['test'][0][0][2].shape\n", |
| | | "print len(test_set['test'][0][0])\n", |
| | | "\n", |
| | | "# I will just use every single one for now. If results are not good I'll sample equally." |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 3, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "Done\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "#Image counter\n", |
| | | "counter = 1\n", |
| | | "\n", |
| | | "#Open the sqlite database\n", |
| | | "conn = sqlite3.connect('/Data/nruiz9/data/facial_landmarks/AFLW/aflw/data/aflw.sqlite')\n", |
| | | "c = conn.cursor()\n", |
| | | "\n", |
| | | "#Creating the query string for retriving: roll, pitch, yaw and faces position\n", |
| | | "#Change it according to what you want to retrieve\n", |
| | | "select_string = \"faceimages.filepath, faces.face_id, facepose.roll, facepose.pitch, facepose.yaw, facerect.x, facerect.y, facerect.w, facerect.h\"\n", |
| | | "from_string = \"faceimages, faces, facepose, facerect\"\n", |
| | | "where_string = \"faces.face_id = facepose.face_id and faces.file_id = faceimages.file_id and faces.face_id = facerect.face_id\"\n", |
| | | "query_string = \"SELECT \" + select_string + \" FROM \" + from_string + \" WHERE \" + where_string\n", |
| | | "\n", |
| | | "#It iterates through the rows returned from the query\n", |
| | | "for row in c.execute(query_string):\n", |
| | | "\n", |
| | | " #Using our specific query_string, the \"row\" variable will contain:\n", |
| | | " # row[0] = image path\n", |
| | | " # row[1] = face id\n", |
| | | " # row[2] = rollgma\n", |
| | | " # row[3] = pitch\n", |
| | | " # row[4] = yaw\n", |
| | | " # row[5] = face coord x\n", |
| | | " # row[6] = face coord y\n", |
| | | " # row[7] = face width\n", |
| | | " # row[8] = face heigh\n", |
| | | "\n", |
| | | " #Creating the full path names for input and output\n", |
| | | " input_path = images_path + str(row[0])\n", |
| | | " output_path = storing_path + str(row[0])\n", |
| | | "\n", |
| | | " #If the file exist then open it \n", |
| | | " if(os.path.isfile(input_path) == True):\n", |
| | | " #image = cv2.imread(input_path, 0) #load in grayscale\n", |
| | | " image = cv2.imread(input_path)\n", |
| | | "\n", |
| | | " #Image dimensions\n", |
| | | " image_h, image_w, _ = image.shape\n", |
| | | " #Roll, pitch and yaw\n", |
| | | " roll = row[2]\n", |
| | | " pitch = row[3]\n", |
| | | " yaw = row[4]\n", |
| | | " #Face rectangle coords\n", |
| | | " face_x = row[5]\n", |
| | | " face_y = row[6]\n", |
| | | " face_w = row[7]\n", |
| | | " face_h = row[8]\n", |
| | | "\n", |
| | | " #Error correction\n", |
| | | " k = 0.35\n", |
| | | " x_min = face_x - face_w * k * 0.6\n", |
| | | " x_max = face_x + face_w + face_w * k * 0.6\n", |
| | | " y_min = face_y - face_h * k * 2\n", |
| | | " y_max = face_y + face_h + face_h * k * 0.6\n", |
| | | " \n", |
| | | " x_min = int(max(0, x_min))\n", |
| | | " x_max = int(min(image_w, x_max))\n", |
| | | " y_min = int(max(0, y_min))\n", |
| | | " y_max = int(min(image_h, y_max))\n", |
| | | " \n", |
| | | " #Crop the face from the image\n", |
| | | " image_cropped = np.copy(image[y_min:y_max, x_min:x_max])\n", |
| | | " #Uncomment the lines below if you want to rescale the image to a particular size\n", |
| | | " to_size = 240\n", |
| | | " image_cropped = cv2.resize(image_cropped, (to_size,to_size), interpolation = cv2.INTER_AREA)\n", |
| | | " #Uncomment the line below if you want to use adaptive histogram normalisation\n", |
| | | " #clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(5,5))\n", |
| | | " #image_normalised = clahe.apply(image_rescaled)\n", |
| | | " #Save the image\n", |
| | | " #change \"image_cropped\" with the last uncommented variable name above\n", |
| | | " cv2.imwrite(output_path, image_cropped)\n", |
| | | " \n", |
| | | " txt_path = os.path.splitext(output_path)[0]+'.txt'\n", |
| | | " directory = os.path.dirname(output_path)\n", |
| | | " if not os.path.exists(directory):\n", |
| | | " os.makedirs(directory)\n", |
| | | " fid = open(txt_path, 'wb')\n", |
| | | " fid.write(input_path + ' ' + str(yaw) + ' ' + str(pitch) + ' ' + str(roll) + ' ' + str(face_x) + ' ' + str(face_y) + ' ' + str(face_w) + ' ' + str(face_h) + '\\n')\n", |
| | | " fid.close()\n", |
| | | " #Increasing the counter\n", |
| | | " counter = counter + 1 \n", |
| | | "\n", |
| | | " #if the file does not exits it return an exception\n", |
| | | " else:\n", |
| | | " raise ValueError('Error: I cannot find the file specified: ' + str(input_path))\n", |
| | | "\n", |
| | | "#Once finished the iteration it closes the database\n", |
| | | "c.close()\n", |
| | | "print 'Done'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 4, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "test\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "print 'test'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": null, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [] |
| | | } |
| | | ], |
| | | "metadata": { |
| | | "anaconda-cloud": {}, |
| | | "kernelspec": { |
| | | "display_name": "Python [conda root]", |
| | | "language": "python", |
| | | "name": "conda-root-py" |
| | | }, |
| | | "language_info": { |
| | | "codemirror_mode": { |
| | | "name": "ipython", |
| | | "version": 2 |
| | | }, |
| | | "file_extension": ".py", |
| | | "mimetype": "text/x-python", |
| | | "name": "python", |
| | | "nbconvert_exporter": "python", |
| | | "pygments_lexer": "ipython2", |
| | | "version": "2.7.12" |
| | | } |
| | | }, |
| | | "nbformat": 4, |
| | | "nbformat_minor": 1 |
| | | } |
New file |
| | |
| | | { |
| | | "cells": [ |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": null, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 7, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [ |
| | | "AFLW2000 = '/Data/nruiz9/data/facial_landmarks/AFLW2000/'\n", |
| | | "AFLW = '/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped/'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 8, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [ |
| | | "list_2000 = '/Data/nruiz9/data/facial_landmarks/AFLW2000/filename_list_filtered.txt'\n", |
| | | "list_normal = '/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped/filename_list.txt'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 9, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "1969\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "fid = open(list_2000, 'r')\n", |
| | | "dict_2000 = dict()\n", |
| | | "for line in fid:\n", |
| | | " line = line.strip('\\n').split('/')\n", |
| | | " dict_2000[line[-1]] = 1\n", |
| | | "print len(dict_2000)\n", |
| | | "fid.close()" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 10, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "1966 19109\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "fid = open(list_normal, 'r')\n", |
| | | "naked = list_normal.strip('.txt')\n", |
| | | "train = open(naked + '_train.txt', 'wb')\n", |
| | | "test = open(naked + '_test.txt', 'wb')\n", |
| | | "test_dict = dict()\n", |
| | | "train_dict = dict()\n", |
| | | "for line in fid:\n", |
| | | " line = line.strip('\\n')\n", |
| | | " name = line.split('/')[-1]\n", |
| | | " if name in dict_2000.keys():\n", |
| | | " test.write(line + '\\n')\n", |
| | | " test_dict[line] = 1\n", |
| | | " else:\n", |
| | | " train.write(line + '\\n')\n", |
| | | " train_dict[line] = 1\n", |
| | | "\n", |
| | | "print len(test_dict), len(train_dict)" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": null, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [] |
| | | } |
| | | ], |
| | | "metadata": { |
| | | "anaconda-cloud": {}, |
| | | "kernelspec": { |
| | | "display_name": "Python [conda root]", |
| | | "language": "python", |
| | | "name": "conda-root-py" |
| | | }, |
| | | "language_info": { |
| | | "codemirror_mode": { |
| | | "name": "ipython", |
| | | "version": 2 |
| | | }, |
| | | "file_extension": ".py", |
| | | "mimetype": "text/x-python", |
| | | "name": "python", |
| | | "nbconvert_exporter": "python", |
| | | "pygments_lexer": "ipython2", |
| | | "version": "2.7.12" |
| | | } |
| | | }, |
| | | "nbformat": 4, |
| | | "nbformat_minor": 1 |
| | | } |
| | |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 2, |
| | | "execution_count": 4, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [ |
| | | "AFLW = '/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped/'\n", |
| | | "filenames = '/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped/filename_list_train.txt'" |
| | | "AFLW = '/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped_loose/'\n", |
| | | "filenames = '/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped_loose/filename_list.txt'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 11, |
| | | "execution_count": 5, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "246\n" |
| | | "243\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "fid = open(filenames, 'r')\n", |
| | | "out = open(os.path.join(AFLW, 'filename_list_train_filtered.txt'), 'wb')\n", |
| | | "out = open(os.path.join(AFLW, 'filename_list_filtered.txt'), 'wb')\n", |
| | | "counter = 0\n", |
| | | "for line in fid:\n", |
| | | " original_line = line\n", |
| | |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 3, |
| | | "execution_count": 4, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 4, |
| | | "execution_count": 5, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
New file |
| | |
| | | { |
| | | "cells": [ |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 30, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [ |
| | | "%matplotlib inline\n", |
| | | "import numpy as np\n", |
| | | "import torch\n", |
| | | "from torch.utils.serialization import load_lua\n", |
| | | "import os\n", |
| | | "import scipy.io as sio\n", |
| | | "import cv2\n", |
| | | "import math\n", |
| | | "from matplotlib import pyplot as plt\n", |
| | | "\n", |
| | | "import sqlite3" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 31, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [ |
| | | "#Change this paths according to your directories\n", |
| | | "images_path = \"/Data/nruiz9/data/facial_landmarks/AFLW/aflw/data/flickr/\"\n", |
| | | "storing_path = \"/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped_loose_test/\"" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 32, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "(573, 1)\n", |
| | | "(232, 1)\n", |
| | | "(165, 1)\n", |
| | | "3\n", |
| | | "(970, 1)\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "#Load KEPLER split file\n", |
| | | "test_set = sio.loadmat('/Data/nruiz9/data/facial_landmarks/AFLW/testset.mat')\n", |
| | | "print test_set['test'][0][0][0].shape\n", |
| | | "print test_set['test'][0][0][1].shape\n", |
| | | "print test_set['test'][0][0][2].shape\n", |
| | | "print len(test_set['test'][0][0])\n", |
| | | "\n", |
| | | "id_test_set = np.concatenate([test_set['test'][0][0][0], test_set['test'][0][0][1], test_set['test'][0][0][2]])\n", |
| | | "print id_test_set.shape\n", |
| | | "\n", |
| | | "# I will just use every single one for now. If results are not good I'll sample equally." |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 38, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "970\n", |
| | | "Done\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "#Image counter\n", |
| | | "counter = 0\n", |
| | | "\n", |
| | | "#Open the sqlite database\n", |
| | | "conn = sqlite3.connect('/Data/nruiz9/data/facial_landmarks/AFLW/aflw/data/aflw.sqlite')\n", |
| | | "c = conn.cursor()\n", |
| | | "\n", |
| | | "#Creating the query string for retriving: roll, pitch, yaw and faces position\n", |
| | | "#Change it according to what you want to retrieve\n", |
| | | "select_string = \"faceimages.filepath, faces.face_id, facepose.roll, facepose.pitch, facepose.yaw, facerect.x, facerect.y, facerect.w, facerect.h\"\n", |
| | | "from_string = \"faceimages, faces, facepose, facerect\"\n", |
| | | "where_string = \"faces.face_id = facepose.face_id and faces.file_id = faceimages.file_id and faces.face_id = facerect.face_id\"\n", |
| | | "query_string = \"SELECT \" + select_string + \" FROM \" + from_string + \" WHERE \" + where_string\n", |
| | | "\n", |
| | | "test_file_txt = '/Data/nruiz9/data/facial_landmarks/AFLW/KEPLER_test_split.txt'\n", |
| | | "out_txt = open(test_file_txt, 'w')\n", |
| | | "#It iterates through the rows returned from the query\n", |
| | | "for row in c.execute(query_string):\n", |
| | | "\n", |
| | | " #Using our specific query_string, the \"row\" variable will contain:\n", |
| | | " # row[0] = image path\n", |
| | | " # row[1] = face id\n", |
| | | " # row[2] = rollgma\n", |
| | | " # row[3] = pitch\n", |
| | | " # row[4] = yaw\n", |
| | | " # row[5] = face coord x\n", |
| | | " # row[6] = face coord y\n", |
| | | " # row[7] = face width\n", |
| | | " # row[8] = face heigh\n", |
| | | " if row[1] in id_test_set:\n", |
| | | " #Creating the full path names for input and output\n", |
| | | " input_path = images_path + str(row[0])\n", |
| | | " output_path = storing_path + str(row[0])\n", |
| | | "\n", |
| | | " #If the file exist then open it \n", |
| | | " if(os.path.isfile(input_path) == True):\n", |
| | | "\n", |
| | | " out_txt.write(str(row[0]) + '.jpg\\n')\n", |
| | | " #Increasing the counter\n", |
| | | " counter = counter + 1 \n", |
| | | "\n", |
| | | " #if the file does not exits it return an exception\n", |
| | | " else:\n", |
| | | " raise ValueError('Error: I cannot find the file specified: ' + str(input_path))\n", |
| | | "\n", |
| | | "#Once finished the iteration it closes the database\n", |
| | | "print counter\n", |
| | | "out_txt.close()\n", |
| | | "c.close()\n", |
| | | "print 'Done'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 4, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "test\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "print 'test'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": null, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [] |
| | | } |
| | | ], |
| | | "metadata": { |
| | | "anaconda-cloud": {}, |
| | | "kernelspec": { |
| | | "display_name": "Python [conda root]", |
| | | "language": "python", |
| | | "name": "conda-root-py" |
| | | }, |
| | | "language_info": { |
| | | "codemirror_mode": { |
| | | "name": "ipython", |
| | | "version": 2 |
| | | }, |
| | | "file_extension": ".py", |
| | | "mimetype": "text/x-python", |
| | | "name": "python", |
| | | "nbconvert_exporter": "python", |
| | | "pygments_lexer": "ipython2", |
| | | "version": "2.7.12" |
| | | } |
| | | }, |
| | | "nbformat": 4, |
| | | "nbformat_minor": 1 |
| | | } |
New file |
| | |
| | | { |
| | | "cells": [ |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": null, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 7, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [ |
| | | "AFLW2000 = '/Data/nruiz9/data/facial_landmarks/AFLW2000/'\n", |
| | | "AFLW = '/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped_loose/'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 8, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [ |
| | | "list_2000 = '/Data/nruiz9/data/facial_landmarks/AFLW/KEPLER_test_split.txt'\n", |
| | | "list_normal = '/Data/nruiz9/data/facial_landmarks/AFLW/aflw_cropped_loose/filename_list_filtered.txt'" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 10, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "961\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "fid = open(list_2000, 'r')\n", |
| | | "dict_2000 = dict()\n", |
| | | "for line in fid:\n", |
| | | " line = line.strip('\\n').split('/')\n", |
| | | " dict_2000[line[-1]] = 1\n", |
| | | "print len(dict_2000)\n", |
| | | "fid.close()" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": 12, |
| | | "metadata": { |
| | | "collapsed": false |
| | | }, |
| | | "outputs": [ |
| | | { |
| | | "name": "stdout", |
| | | "output_type": "stream", |
| | | "text": [ |
| | | "954 19842\n" |
| | | ] |
| | | } |
| | | ], |
| | | "source": [ |
| | | "fid = open(list_normal, 'r')\n", |
| | | "naked = list_normal.strip('.txt')\n", |
| | | "train = open(naked + '_train.txt', 'wb')\n", |
| | | "test = open(naked + '_test.txt', 'wb')\n", |
| | | "test_dict = dict()\n", |
| | | "train_dict = dict()\n", |
| | | "for line in fid:\n", |
| | | " line = line.strip('\\n')\n", |
| | | " name = line.split('/')[-1]\n", |
| | | " if name+'.jpg' in dict_2000.keys():\n", |
| | | " test.write(line + '\\n')\n", |
| | | " test_dict[line] = 1\n", |
| | | " else:\n", |
| | | " train.write(line + '\\n')\n", |
| | | " train_dict[line] = 1\n", |
| | | "\n", |
| | | "print len(test_dict), len(train_dict)" |
| | | ] |
| | | }, |
| | | { |
| | | "cell_type": "code", |
| | | "execution_count": null, |
| | | "metadata": { |
| | | "collapsed": true |
| | | }, |
| | | "outputs": [], |
| | | "source": [] |
| | | } |
| | | ], |
| | | "metadata": { |
| | | "anaconda-cloud": {}, |
| | | "kernelspec": { |
| | | "display_name": "Python [conda root]", |
| | | "language": "python", |
| | | "name": "conda-root-py" |
| | | }, |
| | | "language_info": { |
| | | "codemirror_mode": { |
| | | "name": "ipython", |
| | | "version": 2 |
| | | }, |
| | | "file_extension": ".py", |
| | | "mimetype": "text/x-python", |
| | | "name": "python", |
| | | "nbconvert_exporter": "python", |
| | | "pygments_lexer": "ipython2", |
| | | "version": "2.7.12" |
| | | } |
| | | }, |
| | | "nbformat": 4, |
| | | "nbformat_minor": 1 |
| | | } |