#2025/7/3
#新增qwen_detect.py 修正了使用多线程进行图片描述部分,目前是测试版本
#新增qwen_thread.py 用于生成单个图片描述的多线程处理,目前是测试版本
1个文件已修改
1个文件已添加
408 ■■■■■ 已修改文件
qwen_detect.py 92 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
qwen_thread.py 316 ●●●●● 补丁 | 查看 | 原始文档 | blame | 历史
qwen_detect.py
@@ -1,18 +1,16 @@
# 禁用tokenizer并行(必须放在所有import之前)
from operator import itemgetter
import torch
import threading
import time as time_sel
from typing import Dict
import qwen_task
from qwen_thread import qwen_thread
import requests
import os
import logging
from transformers import AutoProcessor, AutoModelForVision2Seq
from pymilvus import connections, Collection
from logging.handlers import RotatingFileHandler
import get_mem
class ThreadPool:
    def __init__(self):
@@ -40,24 +38,12 @@
        self.threads: Dict[str, threading.Thread] = {}
        self.lock = threading.Lock()
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        # 初始化qwenvl检测模型
        self.qwen_model = AutoModelForVision2Seq.from_pretrained(
            "./Qwen2-VL-2B-Instruct", device_map="auto",
            trust_remote_code=True,
            torch_dtype=torch.float16
        )
        # default processer
        self.qwen_tokenizer = AutoProcessor.from_pretrained("./Qwen2-VL-2B-Instruct")
        # 初始化Milvus集合
        connections.connect("default", host=self.config.get("milvusurl"), port=self.config.get("milvusport"))
        # 加载集合
        self.collection = Collection(name="smartobject")
        self.collection.load()
        self.pool = qwen_thread(int(self.config.get("threadnum")), self.config,"/home/debian/Qwen2.5-VL-3B-Instruct-GPTQ-Int4")
        #是否更新
        self._isupdate = False
@@ -103,31 +89,61 @@
    # 启动线程任务
    def worker(self, camera_id):
        # 初始化
        detect = qwen_task.detect_tasks()
        detect._thread_name = f"{camera_id}"  # 设置名称
        detect.init_logging(f"{camera_id}")
        # 初始化检测模型
        detect.device = self.device
        # 初始化qwen模型
        detect.qwen_tokenizer = self.qwen_tokenizer
        detect.qwen_model = self.qwen_model
        # 初始化Milvus集合
        detect.collection = self.collection
        # 设置线程启动状态
        detect._running = True
        while True:
            try:
                res_a = self.collection.query(
                    expr=f"is_desc == 0 and video_point_id=={camera_id}",
                    output_fields=["id", "zh_desc_class", "text_vector", "bounding_box", "video_point_name", "task_id",
                                   "task_name", "event_level_id", "event_level_name",
                                   "video_point_id", "detect_num", "is_waning", "is_desc", "waning_value", "rule_id",
                                   "detect_id",
                                   "detect_time", "image_path", "image_desc_path", "video_path"],
                    consistency_level="Strong",
                    order_by_field="id",  # 按id字段排序
                    order_by_type="desc"  # 降序排列
                )
                # 读取共享内存中的图片
                image_id = get_mem.smem_read_frame_qianwen(camera_id)
                if image_id > 0:
                    logging.info(f"读取图像成功: {image_id}")
                    image_id = detect.tark_do(image_id,self.config.get("filesavepath"),self.config.get("ragurl"),self.config.get("max_tokens"))
                    logging.info(f"处理图像成功: {image_id}")
                # image_id = get_mem.smem_read_frame_qianwen(camera_id)
                if len(res_a) > 0:
                    sorted_results = sorted(res_a, key=itemgetter("id"), reverse=True)
                    # 查询前N个最大的ID
                    num = int(self.config.get("threadnum")) - 1
                    res_a = sorted_results[:num]
                    for res in res_a:
                        data = {
                            "id": res['id'],
                            "event_level_id": res['event_level_id'],  # event_level_id
                            "event_level_name": res['event_level_name'],  # event_level_id
                            "rule_id": res["rule_id"],
                            "video_point_id": res['video_point_id'],  # video_point_id
                            "video_point_name": res['video_point_name'],
                            "is_waning": 0,
                            "is_desc": 1,
                            "zh_desc_class": res['zh_desc_class'],  # text_vector
                            "bounding_box": res['bounding_box'],  # bounding_box
                            "task_id": res['task_id'],  # task_id
                            "task_name": res['task_name'],  # task_id
                            "detect_id": res['detect_id'],  # detect_id
                            "detect_time": res['detect_time'],  # detect_time
                            "detect_num": res['detect_num'],
                            "waning_value": res['waning_value'],
                            "image_path": res['image_path'],  # image_path
                            "image_desc_path": res['image_desc_path'],  # image_desc_path
                            "video_path": res['video_path'],
                            "text_vector": res['text_vector']
                        }
                        # logging.info(f"读取图像成功: {res['id']}")
                        # 保存到milvus
                        image_id = self.collection.upsert(data).primary_keys
                        res['id'] = image_id[0]
                        # logging.info(f"读取图像成功: {image_id}")
                        image_id = self.pool.submit(res)
                        # image_id = pool.tark_do(image_id,self.config.get("ragurl"),self.config.get("ragmode"),self.config.get("max_tokens"))
                        # logging.info(f"处理图像成功: {image_id}")
                    sorted_results = None
            except Exception as e:
                logging.info(f"{detect._thread_name}线程错误:{e}")
                logging.info(f"{camera_id}线程错误:{e}")
    #调用是否需要更新
    def isUpdate(self):
qwen_thread.py
New file
@@ -0,0 +1,316 @@
import time
from concurrent.futures import ThreadPoolExecutor
import threading
import torch
from PIL import Image
from pymilvus import connections, Collection
from datetime import datetime
import os
import requests
import asyncio
import logging
import re
from logging.handlers import RotatingFileHandler
from transformers import AutoModelForVision2Seq, AutoProcessor
class qwen_thread:
    def __init__(self, max_workers,config,model_path):
        self.executor = ThreadPoolExecutor(max_workers=max_workers)
        self.semaphore = threading.Semaphore(max_workers)
        self.max_workers = max_workers
        # 初始化Milvus集合
        connections.connect("default", host=config.get("milvusurl"), port=config.get("milvusport"))
        # 加载集合
        self.collection = Collection(name="smartobject")
        self.collection.load()
        self.config = config
        self.model_pool = []
        self.lock_pool = [threading.Lock() for _ in range(max_workers)]
        for i in range(max_workers):
            model = AutoModelForVision2Seq.from_pretrained(
                model_path,
                device_map="cuda:1",
                trust_remote_code=True,
                torch_dtype=torch.float16
            ).eval()
            self.model_pool.append(model)
        # 共享的处理器 (线程安全)
        self.processor = AutoProcessor.from_pretrained(model_path,use_fast=True)
        # 创建实例专属logger
        self.logger = logging.getLogger(f"{self.__class__}_{id(self)}")
        self.logger.setLevel(logging.INFO)
        # 避免重复添加handler
        if not self.logger.handlers:
            handler = RotatingFileHandler(
                filename=os.path.join("logs", 'thread_log.log'),
                maxBytes=10 * 1024 * 1024,
                backupCount=3,
                encoding='utf-8'
            )
            formatter = logging.Formatter(
                '%(asctime)s - %(filename)s:%(lineno)d - %(funcName)s() - %(levelname)s: %(message)s'
            )
            handler.setFormatter(formatter)
            self.logger.addHandler(handler)
    def submit(self,res_a):
        # 尝试获取信号量(非阻塞)
        acquired = self.semaphore.acquire(blocking=False)
        if not acquired:
            self.logger.info(f"线程池已满,等待空闲线程... (当前活跃: {self.max_workers - self.semaphore._value}/{self.max_workers})")
            # 阻塞等待直到有可用线程
            self.semaphore.acquire(blocking=True)
        future = self.executor.submit(self._wrap_task, res_a)
        future.add_done_callback(self._release_semaphore)
        return future
    def _wrap_task(self, res):
        try:
            #self.logger.info(f"处理: { res['id']}开始")
            current_time = datetime.now()
            image_id = self.tark_do(res, self.config.get("ragurl"), self.config.get("ragmode"), self.config.get("max_tokens"))
            self.logger.info(f"处理: { res['id']}完毕{image_id}:{datetime.now() - current_time}")
            return image_id
        except Exception as e:
            self.logger.info(f"任务 { res['id']} 处理出错: {e}")
            raise
    def tark_do(self,res,ragurl,rag_mode,max_tokens):
        try :
            # 1. 从集合A获取向量和元数据
            is_waning = 0
            image_des = self.image_desc(f"{res['image_desc_path']}")
            self.logger.info(image_des)
            if image_des:
                # rule_text = self.get_rule(ragurl)
                is_waning = self.image_rule_chat(image_des,res['waning_value'],ragurl,rag_mode,max_tokens)
                is_desc = 2
            else:
                is_waning = 0
                is_desc = 3
            data = {
                "id": res['id'],
                "event_level_id": res['event_level_id'],  # event_level_id
                "event_level_name": res['event_level_name'],  # event_level_id
                "rule_id": res["rule_id"],
                "video_point_id": res['video_point_id'],  # video_point_id
                "video_point_name": res['video_point_name'],
                "is_waning": is_waning,
                "is_desc": is_desc,
                "zh_desc_class": image_des,  # text_vector
                "bounding_box": res['bounding_box'],  # bounding_box
                "task_id": res['task_id'],  # task_id
                "task_name": res['task_name'],  # task_id
                "detect_id": res['detect_id'],  # detect_id
                "detect_time": res['detect_time'],  # detect_time
                "detect_num": res['detect_num'],
                "waning_value": res['waning_value'],
                "image_path": res['image_path'],  # image_path
                "image_desc_path": res['image_desc_path'],  # image_desc_path
                "video_path": res['video_path'],
                "text_vector": res['text_vector']
            }
            # 保存到milvus
            image_id = self.collection.upsert(data).primary_keys
            if is_desc == 2:
                data = {
                    "id": str(image_id[0]),
                    "video_point_id": res['video_point_id'],
                    "video_path": res["video_point_name"],
                    "zh_desc_class": image_des,
                    "detect_time": res['detect_time'],
                    "image_path": f"{res['image_path']}",
                    "task_name": res["task_name"],
                    "event_level_name": res["event_level_name"],
                    "rtsp_address": f"{res['video_path']}"
                }
                # 调用rag
                asyncio.run(self.insert_json_data(ragurl, data))
            return image_id
        except Exception as e:
            self.logger.info(f"线程:执行模型解析时出错:任务:{e}")
            return 0
    def image_desc(self, image_path):
        try:
            model, lock = self._acquire_model()
            # 2. 处理图像
            image = Image.open(image_path).convert("RGB")  # 替换为您的图片路径
            image = image.resize((600, 600), Image.Resampling.LANCZOS)  # 高质量缩放
            messages = [
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image",
                        },
                        {"type": "text", "text": "请详细描述图片中的目标信息及特征。返回格式为整段文字描述"},
                    ],
                }
            ]
            # Preparation for inference
            text = self.processor.apply_chat_template(
                messages, add_generation_prompt=True
            )
            inputs = self.processor(
                text=[text],
                images=[image],
                padding=True,
                return_tensors="pt",
            )
            inputs = inputs.to("cuda:1")
            current_time = datetime.now()
            outputs = model.generate(**inputs,
                                               max_new_tokens=300,
                                               do_sample=True,
                                               temperature=0.7,
                                               renormalize_logits=True
                                               )
            print(f"处理完毕:{datetime.now() - current_time}")
            generated_ids = outputs[:, len(inputs.input_ids[0]):]
            image_text = self.processor.batch_decode(
                generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
            )
            image_des = (image_text[0]).strip()
            return image_des
        except Exception as e:
            self.logger.info(f"线程:执行图片描述时出错:{e}")
        finally:
            # 4. 释放模型
            self._release_model(model)
            torch.cuda.empty_cache()
    def get_rule(self,ragurl):
        try:
            rule_text = None
            search_data = {
                "collection_name": "smart_rule",
                "query_text": "",
                "search_mode": "hybrid",
                "limit": 100,
                "weight_dense": 0.7,
                "weight_sparse": 0.3,
                "filter_expr": "",
                "output_fields": ["text"]
            }
            response = requests.post(ragurl + "/search", json=search_data)
            results = response.json().get('results')
            rule_text = ""
            ruleid = 1
            for rule in results:
                if rule['score'] >= 0:
                    rule_text = rule_text + str(ruleid) + ". " + rule['entity'].get('text') + ";\n"
                    ruleid = ruleid + 1
            # self.logger.info(len(rule_text))
            else:
                self.logger.info(f"线程:执行获取规则时出错:{response}")
            return rule_text
        except Exception as e:
            self.logger.info(f"线程:执行获取规则时出错:{e}")
            return None
    def image_rule_chat(self, image_des,rule_text, ragurl, rag_mode,max_tokens):
        try:
            content = (
                f"图片描述内容为:\n{image_des}\n规则内容:\n{rule_text}。\n请验证图片描述中是否有符合规则的内容,不进行推理和think。返回结果格式为[xxx符合的规则id],如果没有返回[]")
            # self.logger.info(content)
            #self.logger.info(len(content))
            search_data = {
                "prompt": "",
                "messages": [
                    {
                        "role": "user",
                        "content": content
                    }
                ],
                "llm_name": rag_mode,
                "stream": False,
                "gen_conf": {
                    "temperature": 0.7,
                    "max_tokens": max_tokens
                }
            }
            response = requests.post(ragurl + "/chat", json=search_data)
            results = response.json().get('data')
            #self.logger.info(len(results))
            # self.logger.info(results)
            ret = re.sub(r'<think>.*?</think>', '', results, flags=re.DOTALL)
            ret = ret.replace(" ", "").replace("\t", "").replace("\n", "")
            is_waning = 0
            if len(ret) > 2:
                is_waning = 1
            return is_waning
        except Exception as e:
            self.logger.info(f"线程:执行规则匹配时出错:{image_des, rule_text, ragurl, rag_mode,e}")
            return None
    async def insert_json_data(self, ragurl, data):
        try:
            data = {'collection_name': "smartrag", "data": data, "description": ""}
            requests.post(ragurl + "/insert_json_data", json=data, timeout=(0.3, 0.3))
            #self.logger.info(f"调用录像服务:{ragurl, data}")
        except Exception as e:
            #self.logger.info(f"{self._thread_name}线程:调用录像时出错:地址:{ragurl}:{e}")
            return
    def _release_semaphore(self, future):
        self.semaphore.release()
        self.logger.info(f"释放线程 (剩余空闲: {self.semaphore._value}/{self.max_workers})")
    def shutdown(self):
        """安全关闭"""
        self.executor.shutdown(wait=False)
        for model in self.model_pool:
            del model
        torch.cuda.empty_cache()
    def _acquire_model(self):
        """从池中获取一个空闲模型 (简单轮询)"""
        while True:
            for i, (model, lock) in enumerate(zip(self.model_pool, self.lock_pool)):
                if lock.acquire(blocking=False):
                    return model, lock
            time.sleep(0.1)  # 避免CPU空转
    def _release_model(self, model):
        """释放模型回池"""
        for i, m in enumerate(self.model_pool):
            if m == model:
                self.lock_pool[i].release()
                break
    def remove_duplicate_lines(self,text):
        seen = set()
        result = []
        for line in text.split('。'):  # 按句号分割
            if line.strip() and line not in seen:
                seen.add(line)
                result.append(line)
        return '。'.join(result)
    def remove_duplicate_lines_d(self,text):
        seen = set()
        result = []
        for line in text.split(','):  # 按句号分割
            if line.strip() and line not in seen:
                seen.add(line)
                result.append(line)
        return '。'.join(result)
    def remove_duplicate_lines_n(self,text):
        seen = set()
        result = []
        for line in text.split('\n'):  # 按句号分割
            if line.strip() and line not in seen:
                seen.add(line)
                result.append(line)
        return '。'.join(result)