From 0b8e19c1cc8ad03805d4ca68f32df6e4806a36e8 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期五, 08 九月 2017 11:15:10 +0800
Subject: [PATCH] Finetune layer working

---
 code/train.py          |   95 ++++++++--
 code/datasets.py       |   16 
 code/hopenet.py        |   36 +++
 code/test_old.py       |  149 ++++++++++++++++
 code/test.py           |   38 ---
 code/test_preangles.py |  149 ++++++++++++++++
 6 files changed, 420 insertions(+), 63 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index f73c0a1..f24f063 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -60,14 +60,14 @@
             img = img.transpose(Image.FLIP_LEFT_RIGHT)
 
         # Rotate?
-        rnd = np.random.random_sample()
-        if rnd < 0.5:
-            if roll >= 0:
-                img = img.rotate(30)
-                roll -= 30
-            else:
-                img = img.rotate(-30)
-                roll += 30
+        # rnd = np.random.random_sample()
+        # if rnd < 0.5:
+        #     if roll >= 0:
+        #         img = img.rotate(30)
+        #         roll -= 30
+        #     else:
+        #         img = img.rotate(-30)
+        #         roll += 30
 
         # Bin values
         bins = np.array(range(-99, 102, 3))
diff --git a/code/hopenet.py b/code/hopenet.py
index 1b94fa1..274044f 100644
--- a/code/hopenet.py
+++ b/code/hopenet.py
@@ -1,8 +1,8 @@
 import torch
 import torch.nn as nn
-import torchvision.datasets as dsets
 from torch.autograd import Variable
 import math
+import torch.nn.functional as F
 
 # CNN Model (2 conv layer)
 class Simple_CNN(nn.Module):
@@ -58,6 +58,11 @@
         self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
         self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
 
+        self.softmax = nn.Softmax()
+        self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3)
+
+        self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda()
+
         for m in self.modules():
             if isinstance(m, nn.Conv2d):
                 n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
@@ -83,6 +88,12 @@
 
         return nn.Sequential(*layers)
 
+    def get_expectation(angle):
+        angle_pred = F.softmax(angle)
+
+        angle_pred = torch.sum(angle_pred.data * self.idx_tensor, 1)
+        return angle_pred
+
     def forward(self, x):
         x = self.conv1(x)
         x = self.bn1(x)
@@ -96,11 +107,26 @@
 
         x = self.avgpool(x)
         x = x.view(x.size(0), -1)
-        yaw = self.fc_yaw(x)
-        pitch = self.fc_pitch(x)
-        roll = self.fc_roll(x)
+        pre_yaw = self.fc_yaw(x)
+        pre_pitch = self.fc_pitch(x)
+        pre_roll = self.fc_roll(x)
 
-        return yaw, pitch, roll
+        yaw = self.softmax(pre_yaw)
+        yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True)
+        pitch = self.softmax(pre_pitch)
+        pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True)
+        roll = self.softmax(pre_roll)
+        roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True)
+        yaw = yaw.view(yaw.size(0), 1)
+        pitch = pitch.view(pitch.size(0), 1)
+        roll = roll.view(roll.size(0), 1)
+        angles = []
+        angles.append(torch.cat([yaw, pitch, roll], 1))
+
+        for idx in xrange(1):
+            angles.append(self.fc_finetune(torch.cat((angles[-1], x), 1)))
+
+        return pre_yaw, pre_pitch, pre_roll, angles
 
 class Hopenet_shape(nn.Module):
     # This is just Hopenet with 3 output layers for yaw, pitch and roll.
diff --git a/code/test.py b/code/test.py
index b9be11e..8e8fe50 100644
--- a/code/test.py
+++ b/code/test.py
@@ -100,44 +100,22 @@
         label_pitch = labels[:,1].float()
         label_roll = labels[:,2].float()
 
-        yaw, pitch, roll = model(images)
-
-        # Binned predictions
-        _, yaw_bpred = torch.max(yaw.data, 1)
-        _, pitch_bpred = torch.max(pitch.data, 1)
-        _, roll_bpred = torch.max(roll.data, 1)
-
-        # Continuous predictions
-        yaw_predicted = utils.softmax_temperature(yaw.data, 1)
-        pitch_predicted = utils.softmax_temperature(pitch.data, 1)
-        roll_predicted = utils.softmax_temperature(roll.data, 1)
-
-        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu()
-        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu()
-        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
+        pre_yaw, pre_pitch, pre_roll, angles = model(images)
+        yaw = angles[:,0].cpu().data
+        pitch = angles[:,1].cpu().data
+        roll = angles[:,2].cpu().data
 
         # Mean absolute error
-        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
-        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
-        roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
-
-        # Binned Accuracy
-        # for er in xrange(n_margins):
-        #     yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1))
-        #     pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1))
-        #     roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1))
-
-        # print label_yaw[0], yaw_bpred[0,0]
+        yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3)
+        pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3)
+        roll_error += torch.sum(torch.abs(roll - label_roll) * 3)
 
         # Save images with pose cube.
         # TODO: fix for larger batch size
         if args.save_viz:
             name = name[0]
             cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
-            #print os.path.join('output/images', name + '.jpg')
-            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
-            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
-            utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
+            utils.plot_pose_cube(cv2_img, yaw[0] * 3 - 99, pitch[0] * 3 - 99, roll[0] * 3 - 99)
             cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
 
     print('Test error in degrees of the model on the ' + str(total) +
diff --git a/code/test_old.py b/code/test_old.py
new file mode 100644
index 0000000..b9be11e
--- /dev/null
+++ b/code/test_old.py
@@ -0,0 +1,149 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+from torch.utils.data import DataLoader
+from torchvision import transforms
+import torch.backends.cudnn as cudnn
+import torchvision
+import torch.nn.functional as F
+
+import cv2
+import matplotlib.pyplot as plt
+import sys
+import os
+import argparse
+
+import datasets
+import hopenet
+import utils
+
+def parse_args():
+    """Parse input arguments."""
+    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
+    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
+            default=0, type=int)
+    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
+          default='', type=str)
+    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
+          default='', type=str)
+    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
+          default='', type=str)
+    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
+          default=1, type=int)
+    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
+          default=False, type=bool)
+
+    args = parser.parse_args()
+
+    return args
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    cudnn.enabled = True
+    gpu = args.gpu_id
+    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
+
+    # ResNet101 with 3 outputs.
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
+    # ResNet50
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    # ResNet18
+    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+
+    print 'Loading snapshot.'
+    # Load snapshot
+    saved_state_dict = torch.load(snapshot_path)
+    model.load_state_dict(saved_state_dict)
+
+    print 'Loading data.'
+
+    # transformations = transforms.Compose([transforms.Scale(224),
+    # transforms.RandomCrop(224), transforms.ToTensor()])
+
+    transformations = transforms.Compose([transforms.Scale(224),
+    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
+
+    pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
+                                transformations)
+    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
+                                               batch_size=args.batch_size,
+                                               num_workers=2)
+
+    model.cuda(gpu)
+
+    print 'Ready to test network.'
+
+    # Test the Model
+    model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
+    total = 0
+    n_margins = 20
+    yaw_correct = np.zeros(n_margins)
+    pitch_correct = np.zeros(n_margins)
+    roll_correct = np.zeros(n_margins)
+
+    idx_tensor = [idx for idx in xrange(66)]
+    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
+
+    yaw_error = .0
+    pitch_error = .0
+    roll_error = .0
+
+    l1loss = torch.nn.L1Loss(size_average=False)
+
+    for i, (images, labels, name) in enumerate(test_loader):
+        images = Variable(images).cuda(gpu)
+        total += labels.size(0)
+        label_yaw = labels[:,0].float()
+        label_pitch = labels[:,1].float()
+        label_roll = labels[:,2].float()
+
+        yaw, pitch, roll = model(images)
+
+        # Binned predictions
+        _, yaw_bpred = torch.max(yaw.data, 1)
+        _, pitch_bpred = torch.max(pitch.data, 1)
+        _, roll_bpred = torch.max(roll.data, 1)
+
+        # Continuous predictions
+        yaw_predicted = utils.softmax_temperature(yaw.data, 1)
+        pitch_predicted = utils.softmax_temperature(pitch.data, 1)
+        roll_predicted = utils.softmax_temperature(roll.data, 1)
+
+        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu()
+        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu()
+        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
+
+        # Mean absolute error
+        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
+        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
+        roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
+
+        # Binned Accuracy
+        # for er in xrange(n_margins):
+        #     yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1))
+        #     pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1))
+        #     roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1))
+
+        # print label_yaw[0], yaw_bpred[0,0]
+
+        # Save images with pose cube.
+        # TODO: fix for larger batch size
+        if args.save_viz:
+            name = name[0]
+            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+            #print os.path.join('output/images', name + '.jpg')
+            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
+            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
+            utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
+            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
+
+    print('Test error in degrees of the model on the ' + str(total) +
+    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
+    pitch_error / total, roll_error / total))
+
+    # Binned accuracy
+    # for idx in xrange(len(yaw_correct)):
+    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total
diff --git a/code/test_preangles.py b/code/test_preangles.py
new file mode 100644
index 0000000..67e4744
--- /dev/null
+++ b/code/test_preangles.py
@@ -0,0 +1,149 @@
+import numpy as np
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+from torch.utils.data import DataLoader
+from torchvision import transforms
+import torch.backends.cudnn as cudnn
+import torchvision
+import torch.nn.functional as F
+
+import cv2
+import matplotlib.pyplot as plt
+import sys
+import os
+import argparse
+
+import datasets
+import hopenet
+import utils
+
+def parse_args():
+    """Parse input arguments."""
+    parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
+    parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
+            default=0, type=int)
+    parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
+          default='', type=str)
+    parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
+          default='', type=str)
+    parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.',
+          default='', type=str)
+    parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
+          default=1, type=int)
+    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
+          default=False, type=bool)
+
+    args = parser.parse_args()
+
+    return args
+
+if __name__ == '__main__':
+    args = parse_args()
+
+    cudnn.enabled = True
+    gpu = args.gpu_id
+    snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
+
+    # ResNet101 with 3 outputs.
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
+    # ResNet50
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    # ResNet18
+    # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
+
+    print 'Loading snapshot.'
+    # Load snapshot
+    saved_state_dict = torch.load(snapshot_path)
+    model.load_state_dict(saved_state_dict)
+
+    print 'Loading data.'
+
+    # transformations = transforms.Compose([transforms.Scale(224),
+    # transforms.RandomCrop(224), transforms.ToTensor()])
+
+    transformations = transforms.Compose([transforms.Scale(224),
+    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
+
+    pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
+                                transformations)
+    test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
+                                               batch_size=args.batch_size,
+                                               num_workers=2)
+
+    model.cuda(gpu)
+
+    print 'Ready to test network.'
+
+    # Test the Model
+    model.eval()  # Change model to 'eval' mode (BN uses moving mean/var).
+    total = 0
+    n_margins = 20
+    yaw_correct = np.zeros(n_margins)
+    pitch_correct = np.zeros(n_margins)
+    roll_correct = np.zeros(n_margins)
+
+    idx_tensor = [idx for idx in xrange(66)]
+    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
+
+    yaw_error = .0
+    pitch_error = .0
+    roll_error = .0
+
+    l1loss = torch.nn.L1Loss(size_average=False)
+
+    for i, (images, labels, name) in enumerate(test_loader):
+        images = Variable(images).cuda(gpu)
+        total += labels.size(0)
+        label_yaw = labels[:,0].float()
+        label_pitch = labels[:,1].float()
+        label_roll = labels[:,2].float()
+
+        yaw, pitch, roll, angles = model(images)
+
+        # Binned predictions
+        _, yaw_bpred = torch.max(yaw.data, 1)
+        _, pitch_bpred = torch.max(pitch.data, 1)
+        _, roll_bpred = torch.max(roll.data, 1)
+
+        # Continuous predictions
+        yaw_predicted = utils.softmax_temperature(yaw.data, 1)
+        pitch_predicted = utils.softmax_temperature(pitch.data, 1)
+        roll_predicted = utils.softmax_temperature(roll.data, 1)
+
+        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu()
+        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu()
+        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
+
+        # Mean absolute error
+        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
+        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
+        roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
+
+        # Binned Accuracy
+        # for er in xrange(n_margins):
+        #     yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1))
+        #     pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1))
+        #     roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1))
+
+        # print label_yaw[0], yaw_bpred[0,0]
+
+        # Save images with pose cube.
+        # TODO: fix for larger batch size
+        if args.save_viz:
+            name = name[0]
+            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+            #print os.path.join('output/images', name + '.jpg')
+            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
+            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
+            utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
+            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
+
+    print('Test error in degrees of the model on the ' + str(total) +
+    ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
+    pitch_error / total, roll_error / total))
+
+    # Binned accuracy
+    # for idx in xrange(len(yaw_correct)):
+    #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total
diff --git a/code/train.py b/code/train.py
index 5d7fc7d..826793d 100644
--- a/code/train.py
+++ b/code/train.py
@@ -33,6 +33,8 @@
             default=0, type=int)
     parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
           default=5, type=int)
+    parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.',
+          default=5, type=int)
     parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
           default=16, type=int)
     parser.add_argument('--lr', dest='lr', help='Base learning rate.',
@@ -41,9 +43,7 @@
           default='', type=str)
     parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
           default='', type=str)
-
     args = parser.parse_args()
-
     return args
 
 def get_ignored_params(model):
@@ -66,6 +66,7 @@
     b.append(model.fc_yaw)
     b.append(model.fc_pitch)
     b.append(model.fc_roll)
+    b.append(model.fc_finetune)
     for i in range(len(b)):
         for j in b[i].modules():
             for k in j.parameters():
@@ -86,6 +87,7 @@
 
     cudnn.enabled = True
     num_epochs = args.num_epochs
+    num_epochs_ft = args.num_epochs_ft
     batch_size = args.batch_size
     gpu = args.gpu_id
 
@@ -129,13 +131,10 @@
     optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr},
                                   {'params': get_non_ignored_params(model), 'lr': args.lr * 10}],
                                   lr = args.lr)
-    # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr},
-    #                               {'params': get_non_ignored_params(model), 'lr': args.lr}],
-    #                               lr = args.lr,
-    #                               momentum = 0.9, weight_decay=0.01)
 
     print 'Ready to train network.'
 
+    print 'First phase of training.'
     for epoch in range(num_epochs):
         for i, (images, labels, name) in enumerate(train_loader):
             images = Variable(images.cuda(gpu))
@@ -146,17 +145,17 @@
             optimizer.zero_grad()
             model.zero_grad()
 
-            yaw, pitch, roll = model(images)
+            pre_yaw, pre_pitch, pre_roll, angles = model(images)
 
             # Cross entropy loss
-            loss_yaw = criterion(yaw, label_yaw)
-            loss_pitch = criterion(pitch, label_pitch)
-            loss_roll = criterion(roll, label_roll)
+            loss_yaw = criterion(pre_yaw, label_yaw)
+            loss_pitch = criterion(pre_pitch, label_pitch)
+            loss_roll = criterion(pre_roll, label_roll)
 
             # MSE loss
-            yaw_predicted = F.softmax(yaw)
-            pitch_predicted = F.softmax(pitch)
-            roll_predicted = F.softmax(roll)
+            yaw_predicted = F.softmax(pre_yaw)
+            pitch_predicted = F.softmax(pre_pitch)
+            roll_predicted = F.softmax(pre_roll)
 
             yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
             pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
@@ -176,21 +175,77 @@
             torch.autograd.backward(loss_seq, grad_seq)
             optimizer.step()
 
-            # print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
-            #        %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
-
             if (i+1) % 100 == 0:
                 print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
                        %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
                 # if epoch == 0:
                 #     torch.save(model.state_dict(),
-                #     'output/snapshots/resnet50_lbatch_iter_'+ str(i+1) + '.pkl')
+                #     'output/snapshots/hopenet50_epoch_'+ str(i+1) + '.pkl')
 
         # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs - 1:
+        if epoch % 1 == 0 and epoch < num_epochs:
             print 'Taking snapshot...'
             torch.save(model.state_dict(),
-            'output/snapshots/resnet50_norm_30rot_epoch_'+ str(epoch+1) + '.pkl')
+            'output/snapshots/hopenet50_epoch_'+ str(epoch+1) + '.pkl')
+
+    print 'Second phase of training (finetuning layer).'
+    for epoch in range(num_epochs_ft):
+        for i, (images, labels, name) in enumerate(train_loader):
+            images = Variable(images.cuda(gpu))
+            label_yaw = Variable(labels[:,0].cuda(gpu))
+            label_pitch = Variable(labels[:,1].cuda(gpu))
+            label_roll = Variable(labels[:,2].cuda(gpu))
+            label_angles = Variable(labels[:,:3].cuda(gpu))
+
+            optimizer.zero_grad()
+            model.zero_grad()
+
+            pre_yaw, pre_pitch, pre_roll, angles = model(images)
+
+            # Cross entropy loss
+            loss_yaw = criterion(pre_yaw, label_yaw)
+            loss_pitch = criterion(pre_pitch, label_pitch)
+            loss_roll = criterion(pre_roll, label_roll)
+
+            # MSE loss
+            yaw_predicted = F.softmax(pre_yaw)
+            pitch_predicted = F.softmax(pre_pitch)
+            roll_predicted = F.softmax(pre_roll)
+
+            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
+            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
+            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
+
+            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
+            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
+            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
+
+            # Total loss
+            loss_yaw += alpha * loss_reg_yaw
+            loss_pitch += alpha * loss_reg_pitch
+            loss_roll += alpha * loss_reg_roll
+
+            # Finetuning loss
+            loss_angles = reg_criterion(angles[0], label_angles.float())
+
+            loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles]
+            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
+            torch.autograd.backward(loss_seq, grad_seq)
+            optimizer.step()
+
+            if (i+1) % 100 == 0:
+                print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f'
+                       %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0]))
+                # if epoch == 0:
+                #     torch.save(model.state_dict(),
+                #     'output/snapshots/hopenet50_iter_'+ str(i+1) + '.pkl')
+
+        # Save models at numbered epochs.
+        if epoch % 1 == 0 and epoch < num_epochs_ft - 1:
+            print 'Taking snapshot...'
+            torch.save(model.state_dict(),
+            'output/snapshots/hopenet50_epoch_'+ str(num_epochs+epoch+1) + '.pkl')
+
 
     # Save the final Trained Model
-    torch.save(model.state_dict(), 'output/snapshots/resnet50_norm_30rot_epoch_' + str(epoch+1) + '.pkl')
+    torch.save(model.state_dict(), 'output/snapshots/hopenet50_epoch_' + str(num_epochs+epoch+1) + '.pkl')

--
Gitblit v1.8.0