From 0b8e19c1cc8ad03805d4ca68f32df6e4806a36e8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期五, 08 九月 2017 11:15:10 +0800 Subject: [PATCH] Finetune layer working --- code/train.py | 95 ++++++++-- code/datasets.py | 16 code/hopenet.py | 36 +++ code/test_old.py | 149 ++++++++++++++++ code/test.py | 38 --- code/test_preangles.py | 149 ++++++++++++++++ 6 files changed, 420 insertions(+), 63 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index f73c0a1..f24f063 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -60,14 +60,14 @@ img = img.transpose(Image.FLIP_LEFT_RIGHT) # Rotate? - rnd = np.random.random_sample() - if rnd < 0.5: - if roll >= 0: - img = img.rotate(30) - roll -= 30 - else: - img = img.rotate(-30) - roll += 30 + # rnd = np.random.random_sample() + # if rnd < 0.5: + # if roll >= 0: + # img = img.rotate(30) + # roll -= 30 + # else: + # img = img.rotate(-30) + # roll += 30 # Bin values bins = np.array(range(-99, 102, 3)) diff --git a/code/hopenet.py b/code/hopenet.py index 1b94fa1..274044f 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -1,8 +1,8 @@ import torch import torch.nn as nn -import torchvision.datasets as dsets from torch.autograd import Variable import math +import torch.nn.functional as F # CNN Model (2 conv layer) class Simple_CNN(nn.Module): @@ -58,6 +58,11 @@ self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) + self.softmax = nn.Softmax() + self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) + + self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() + for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels @@ -83,6 +88,12 @@ return nn.Sequential(*layers) + def get_expectation(angle): + angle_pred = F.softmax(angle) + + angle_pred = torch.sum(angle_pred.data * self.idx_tensor, 1) + return angle_pred + def forward(self, x): x = self.conv1(x) x = self.bn1(x) @@ -96,11 +107,26 @@ x = self.avgpool(x) x = x.view(x.size(0), -1) - yaw = self.fc_yaw(x) - pitch = self.fc_pitch(x) - roll = self.fc_roll(x) + pre_yaw = self.fc_yaw(x) + pre_pitch = self.fc_pitch(x) + pre_roll = self.fc_roll(x) - return yaw, pitch, roll + yaw = self.softmax(pre_yaw) + yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) + pitch = self.softmax(pre_pitch) + pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) + roll = self.softmax(pre_roll) + roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) + yaw = yaw.view(yaw.size(0), 1) + pitch = pitch.view(pitch.size(0), 1) + roll = roll.view(roll.size(0), 1) + angles = [] + angles.append(torch.cat([yaw, pitch, roll], 1)) + + for idx in xrange(1): + angles.append(self.fc_finetune(torch.cat((angles[-1], x), 1))) + + return pre_yaw, pre_pitch, pre_roll, angles class Hopenet_shape(nn.Module): # This is just Hopenet with 3 output layers for yaw, pitch and roll. diff --git a/code/test.py b/code/test.py index b9be11e..8e8fe50 100644 --- a/code/test.py +++ b/code/test.py @@ -100,44 +100,22 @@ label_pitch = labels[:,1].float() label_roll = labels[:,2].float() - yaw, pitch, roll = model(images) - - # Binned predictions - _, yaw_bpred = torch.max(yaw.data, 1) - _, pitch_bpred = torch.max(pitch.data, 1) - _, roll_bpred = torch.max(roll.data, 1) - - # Continuous predictions - yaw_predicted = utils.softmax_temperature(yaw.data, 1) - pitch_predicted = utils.softmax_temperature(pitch.data, 1) - roll_predicted = utils.softmax_temperature(roll.data, 1) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() + pre_yaw, pre_pitch, pre_roll, angles = model(images) + yaw = angles[:,0].cpu().data + pitch = angles[:,1].cpu().data + roll = angles[:,2].cpu().data # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) - pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) - roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) - - # Binned Accuracy - # for er in xrange(n_margins): - # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) - # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) - # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) - - # print label_yaw[0], yaw_bpred[0,0] + yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll - label_roll) * 3) # Save images with pose cube. # TODO: fix for larger batch size if args.save_viz: name = name[0] cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) - #print os.path.join('output/images', name + '.jpg') - #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 - #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 - utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) + utils.plot_pose_cube(cv2_img, yaw[0] * 3 - 99, pitch[0] * 3 - 99, roll[0] * 3 - 99) cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) print('Test error in degrees of the model on the ' + str(total) + diff --git a/code/test_old.py b/code/test_old.py new file mode 100644 index 0000000..b9be11e --- /dev/null +++ b/code/test_old.py @@ -0,0 +1,149 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') + + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + + print 'Loading snapshot.' + # Load snapshot + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + print 'Loading data.' + + # transformations = transforms.Compose([transforms.Scale(224), + # transforms.RandomCrop(224), transforms.ToTensor()]) + + transformations = transforms.Compose([transforms.Scale(224), + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + transformations) + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + n_margins = 20 + yaw_correct = np.zeros(n_margins) + pitch_correct = np.zeros(n_margins) + roll_correct = np.zeros(n_margins) + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + total += labels.size(0) + label_yaw = labels[:,0].float() + label_pitch = labels[:,1].float() + label_roll = labels[:,2].float() + + yaw, pitch, roll = model(images) + + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) + + # Continuous predictions + yaw_predicted = utils.softmax_temperature(yaw.data, 1) + pitch_predicted = utils.softmax_temperature(pitch.data, 1) + roll_predicted = utils.softmax_temperature(roll.data, 1) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() + + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) + + # Binned Accuracy + # for er in xrange(n_margins): + # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) + # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) + # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) + + # print label_yaw[0], yaw_bpred[0,0] + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + #print os.path.join('output/images', name + '.jpg') + #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 + #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 + utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + + # Binned accuracy + # for idx in xrange(len(yaw_correct)): + # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/test_preangles.py b/code/test_preangles.py new file mode 100644 index 0000000..67e4744 --- /dev/null +++ b/code/test_preangles.py @@ -0,0 +1,149 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') + + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + + print 'Loading snapshot.' + # Load snapshot + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + print 'Loading data.' + + # transformations = transforms.Compose([transforms.Scale(224), + # transforms.RandomCrop(224), transforms.ToTensor()]) + + transformations = transforms.Compose([transforms.Scale(224), + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + transformations) + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + n_margins = 20 + yaw_correct = np.zeros(n_margins) + pitch_correct = np.zeros(n_margins) + roll_correct = np.zeros(n_margins) + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + total += labels.size(0) + label_yaw = labels[:,0].float() + label_pitch = labels[:,1].float() + label_roll = labels[:,2].float() + + yaw, pitch, roll, angles = model(images) + + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) + + # Continuous predictions + yaw_predicted = utils.softmax_temperature(yaw.data, 1) + pitch_predicted = utils.softmax_temperature(pitch.data, 1) + roll_predicted = utils.softmax_temperature(roll.data, 1) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() + + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) + + # Binned Accuracy + # for er in xrange(n_margins): + # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) + # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) + # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) + + # print label_yaw[0], yaw_bpred[0,0] + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + #print os.path.join('output/images', name + '.jpg') + #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 + #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 + utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + + # Binned accuracy + # for idx in xrange(len(yaw_correct)): + # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/train.py b/code/train.py index 5d7fc7d..826793d 100644 --- a/code/train.py +++ b/code/train.py @@ -33,6 +33,8 @@ default=0, type=int) parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', default=5, type=int) + parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.', + default=5, type=int) parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', default=16, type=int) parser.add_argument('--lr', dest='lr', help='Base learning rate.', @@ -41,9 +43,7 @@ default='', type=str) parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', default='', type=str) - args = parser.parse_args() - return args def get_ignored_params(model): @@ -66,6 +66,7 @@ b.append(model.fc_yaw) b.append(model.fc_pitch) b.append(model.fc_roll) + b.append(model.fc_finetune) for i in range(len(b)): for j in b[i].modules(): for k in j.parameters(): @@ -86,6 +87,7 @@ cudnn.enabled = True num_epochs = args.num_epochs + num_epochs_ft = args.num_epochs_ft batch_size = args.batch_size gpu = args.gpu_id @@ -129,13 +131,10 @@ optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], lr = args.lr) - # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, - # {'params': get_non_ignored_params(model), 'lr': args.lr}], - # lr = args.lr, - # momentum = 0.9, weight_decay=0.01) print 'Ready to train network.' + print 'First phase of training.' for epoch in range(num_epochs): for i, (images, labels, name) in enumerate(train_loader): images = Variable(images.cuda(gpu)) @@ -146,17 +145,17 @@ optimizer.zero_grad() model.zero_grad() - yaw, pitch, roll = model(images) + pre_yaw, pre_pitch, pre_roll, angles = model(images) # Cross entropy loss - loss_yaw = criterion(yaw, label_yaw) - loss_pitch = criterion(pitch, label_pitch) - loss_roll = criterion(roll, label_roll) + loss_yaw = criterion(pre_yaw, label_yaw) + loss_pitch = criterion(pre_pitch, label_pitch) + loss_roll = criterion(pre_roll, label_roll) # MSE loss - yaw_predicted = F.softmax(yaw) - pitch_predicted = F.softmax(pitch) - roll_predicted = F.softmax(roll) + yaw_predicted = F.softmax(pre_yaw) + pitch_predicted = F.softmax(pre_pitch) + roll_predicted = F.softmax(pre_roll) yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) @@ -176,21 +175,77 @@ torch.autograd.backward(loss_seq, grad_seq) optimizer.step() - # print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' - # %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - if (i+1) % 100 == 0: print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) # if epoch == 0: # torch.save(model.state_dict(), - # 'output/snapshots/resnet50_lbatch_iter_'+ str(i+1) + '.pkl') + # 'output/snapshots/hopenet50_epoch_'+ str(i+1) + '.pkl') # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs - 1: + if epoch % 1 == 0 and epoch < num_epochs: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/resnet50_norm_30rot_epoch_'+ str(epoch+1) + '.pkl') + 'output/snapshots/hopenet50_epoch_'+ str(epoch+1) + '.pkl') + + print 'Second phase of training (finetuning layer).' + for epoch in range(num_epochs_ft): + for i, (images, labels, name) in enumerate(train_loader): + images = Variable(images.cuda(gpu)) + label_yaw = Variable(labels[:,0].cuda(gpu)) + label_pitch = Variable(labels[:,1].cuda(gpu)) + label_roll = Variable(labels[:,2].cuda(gpu)) + label_angles = Variable(labels[:,:3].cuda(gpu)) + + optimizer.zero_grad() + model.zero_grad() + + pre_yaw, pre_pitch, pre_roll, angles = model(images) + + # Cross entropy loss + loss_yaw = criterion(pre_yaw, label_yaw) + loss_pitch = criterion(pre_pitch, label_pitch) + loss_roll = criterion(pre_roll, label_roll) + + # MSE loss + yaw_predicted = F.softmax(pre_yaw) + pitch_predicted = F.softmax(pre_pitch) + roll_predicted = F.softmax(pre_roll) + + yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) + loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + + # Total loss + loss_yaw += alpha * loss_reg_yaw + loss_pitch += alpha * loss_reg_pitch + loss_roll += alpha * loss_reg_roll + + # Finetuning loss + loss_angles = reg_criterion(angles[0], label_angles.float()) + + loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] + grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + torch.autograd.backward(loss_seq, grad_seq) + optimizer.step() + + if (i+1) % 100 == 0: + print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f' + %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) + # if epoch == 0: + # torch.save(model.state_dict(), + # 'output/snapshots/hopenet50_iter_'+ str(i+1) + '.pkl') + + # Save models at numbered epochs. + if epoch % 1 == 0 and epoch < num_epochs_ft - 1: + print 'Taking snapshot...' + torch.save(model.state_dict(), + 'output/snapshots/hopenet50_epoch_'+ str(num_epochs+epoch+1) + '.pkl') + # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/resnet50_norm_30rot_epoch_' + str(epoch+1) + '.pkl') + torch.save(model.state_dict(), 'output/snapshots/hopenet50_epoch_' + str(num_epochs+epoch+1) + '.pkl') -- Gitblit v1.8.0