From 0b8e19c1cc8ad03805d4ca68f32df6e4806a36e8 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期五, 08 九月 2017 11:15:10 +0800
Subject: [PATCH] Finetune layer working

---
 code/datasets.py |  325 +++++++++++++++++++++++++++++++++++++++++++++++++++---
 1 files changed, 306 insertions(+), 19 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index 030059f..f24f063 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -7,8 +7,12 @@
 
 import utils
 
+def stack_grayscale_tensor(tensor):
+    tensor = torch.cat([tensor, tensor, tensor], 0)
+    return tensor
+
 class Pose_300W_LP(Dataset):
-    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
         self.img_ext = img_ext
@@ -18,26 +22,73 @@
 
         self.X_train = filename_list
         self.y_train = filename_list
+        self.image_mode = image_mode
         self.length = len(filename_list)
 
     def __getitem__(self, index):
         img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
-        img = img.convert('RGB')
+        img = img.convert(self.image_mode)
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+        shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
 
-        pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
-        label = torch.FloatTensor(pose)
+        # Crop the face
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        k = 0.35
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # We get the pose in radians
+        pose = utils.get_ypr_from_mat(mat_path)
+        # And convert to degrees.
+        pitch = pose[0] * 180 / np.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+
+        # Flip?
+        rnd = np.random.random_sample()
+        if rnd < 0.5:
+            yaw = -yaw
+            roll = -roll
+            img = img.transpose(Image.FLIP_LEFT_RIGHT)
+
+        # Rotate?
+        # rnd = np.random.random_sample()
+        # if rnd < 0.5:
+        #     if roll >= 0:
+        #         img = img.rotate(30)
+        #         roll -= 30
+        #     else:
+        #         img = img.rotate(-30)
+        #         roll += 30
+
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
+
+        # Get shape
+        shape = np.load(shape_path)
+
+        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
 
         if self.transform is not None:
             img = self.transform(img)
 
-        return img, label, self.X_train[index]
+        return img, labels, self.X_train[index]
 
     def __len__(self):
         # 122,450
         return self.length
 
 class AFLW2000(Dataset):
-    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
         self.img_ext = img_ext
@@ -47,26 +98,56 @@
 
         self.X_train = filename_list
         self.y_train = filename_list
+        self.image_mode = image_mode
         self.length = len(filename_list)
 
     def __getitem__(self, index):
         img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
-        img = img.convert('RGB')
+        img = img.convert(self.image_mode)
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
 
-        pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
-        label = torch.FloatTensor(pose)
+        # Crop the face
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        # k = 0.35
+        # x_min -= 0.6 * k * abs(x_max - x_min)
+        # y_min -= 2 * k * abs(y_max - y_min)
+        # x_max += 0.6 * k * abs(x_max - x_min)
+        # y_max += 0.6 * k * abs(y_max - y_min)
+        # img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        k = 0.15
+        x_min -= k * abs(x_max - x_min)
+        y_min -= 4 * k * abs(y_max - y_min)
+        x_max += k * abs(x_max - x_min)
+        y_max += 0.4 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # We get the pose in radians
+        pose = utils.get_ypr_from_mat(mat_path)
+        # And convert to degrees.
+        pitch = pose[0] * 180 / np.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
 
         if self.transform is not None:
             img = self.transform(img)
 
-        return img, label, self.X_train[index]
+        return img, labels, self.X_train[index]
 
     def __len__(self):
         # 2,000
         return self.length
 
-class Pose_300W_LP_binned(Dataset):
-    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
+class AFLW(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
         self.img_ext = img_ext
@@ -76,28 +157,234 @@
 
         self.X_train = filename_list
         self.y_train = filename_list
+        self.image_mode = image_mode
         self.length = len(filename_list)
 
     def __getitem__(self, index):
         img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
-        img = img.convert('RGB')
+        img = img.convert(self.image_mode)
+        txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
 
         # We get the pose in radians
-        pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
-        # And convert to positive degrees.
-        pose = pose * 180 / np.pi + 90
-
-        label = torch.FloatTensor(pose)
+        annot = open(txt_path, 'r')
+        line = annot.readline().split(' ')
+        pose = [float(line[1]), float(line[2]), float(line[3])]
+        # And convert to degrees.
+        yaw = pose[0] * 180 / np.pi
+        pitch = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+        # Something weird with the roll in AFLW
+        # if yaw < 0:
+        roll *= -1
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
 
         if self.transform is not None:
             img = self.transform(img)
 
-        return img, label, self.X_train[index]
+        return img, labels, self.X_train[index]
+
+    def __len__(self):
+        # train: 18,863
+        # test: 1,966
+        return self.length
+
+class AFW(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.image_mode = image_mode
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+        img_name = self.X_train[index].split('_')[0]
+
+        img = Image.open(os.path.join(self.data_dir, img_name + self.img_ext))
+        img = img.convert(self.image_mode)
+        txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+
+        # We get the pose in degrees
+        annot = open(txt_path, 'r')
+        line = annot.readline().split(' ')
+        yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])]
+
+        # Crop the face
+        margin = 40
+        x_min = float(line[4]) - margin
+        y_min = float(line[5]) - margin
+        x_max = float(line[6]) + margin
+        y_max = float(line[7]) + margin
+
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, self.X_train[index]
+
+    def __len__(self):
+        # Around 200
+        return self.length
+
+class LP_300W_LP(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.image_mode = image_mode
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
+        img = img.convert(self.image_mode)
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+        shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
+
+        # Crop the face
+        # TODO: Change bounding box.
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        k = 0.35
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # We get the pose in radians
+        pose = utils.get_ypr_from_mat(mat_path)
+        # And convert to degrees.
+        pitch = pose[0] * 180 / np.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
+
+        # Get shape binned shape
+        shape = np.load(shape_path)
+
+        # Convert pt2d to maps of image size
+        # that have
+
+        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, self.X_train[index]
 
     def __len__(self):
         # 122,450
         return self.length
 
+class BIWI(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.png', annot_ext='.txt', image_mode='RGB'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.image_mode = image_mode
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + '_rgb' + self.img_ext))
+        img = img.convert(self.image_mode)
+        pose_path = os.path.join(self.data_dir, self.y_train[index] + '_pose' + self.annot_ext)
+
+        y_train_list = self.y_train[index].split('/')
+        bbox_path = os.path.join(self.data_dir, y_train_list[0] + '/dockerface-' + y_train_list[-1] + '_rgb' + self.annot_ext)
+
+        # Load bounding box
+        bbox = open(bbox_path, 'r')
+        line = bbox.readline().split(' ')
+        if len(line) < 4:
+            x_min, y_min, x_max, y_max = 0, 0, img.size[0], img.size[1]
+        else:
+            x_min, y_min, x_max, y_max = [float(line[1]), float(line[2]), float(line[3]), float(line[4])]
+        bbox.close()
+
+        # Load pose in degrees
+        pose_annot = open(pose_path, 'r')
+        R = []
+        for line in pose_annot:
+            line = line.strip('\n').split(' ')
+            l = []
+            if line[0] != '':
+                for nb in line:
+                    if nb == '':
+                        continue
+                    l.append(float(nb))
+                R.append(l)
+
+        R = np.array(R)
+        T = R[3,:]
+        R = R[:3,:]
+        pose_annot.close()
+
+        roll = np.arctan2(R[1][0], R[0][0]) * 180 / np.pi
+        yaw = np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi
+        pitch = -np.arctan2(R[2][1], R[2][2]) * 180 / np.pi
+
+        # Loosely crop face
+        k = 0.35
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # Flip?
+        # rnd = np.random.random_sample()
+        # if rnd < 0.5:
+        #     yaw = -yaw
+        #     roll = -roll
+        #     img = img.transpose(Image.FLIP_LEFT_RIGHT)
+
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
+
+        labels = torch.LongTensor(binned_pose)
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, self.X_train[index]
+
+    def __len__(self):
+        # 15,667
+        return self.length
+
+
 def get_list_from_filenames(file_path):
     # input:    relative path to .txt file with file names
     # output:   list of relative path names

--
Gitblit v1.8.0