From 0b8e19c1cc8ad03805d4ca68f32df6e4806a36e8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期五, 08 九月 2017 11:15:10 +0800 Subject: [PATCH] Finetune layer working --- code/datasets.py | 325 +++++++++++++++++++++++++++++++++++++++++++++++++++--- 1 files changed, 306 insertions(+), 19 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index 030059f..f24f063 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -7,8 +7,12 @@ import utils +def stack_grayscale_tensor(tensor): + tensor = torch.cat([tensor, tensor, tensor], 0) + return tensor + class Pose_300W_LP(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -18,26 +22,73 @@ self.X_train = filename_list self.y_train = filename_list + self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) - label = torch.FloatTensor(pose) + # Crop the face + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.35 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + + # Flip? + rnd = np.random.random_sample() + if rnd < 0.5: + yaw = -yaw + roll = -roll + img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Rotate? + # rnd = np.random.random_sample() + # if rnd < 0.5: + # if roll >= 0: + # img = img.rotate(30) + # roll -= 30 + # else: + # img = img.rotate(-30) + # roll += 30 + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + # Get shape + shape = np.load(shape_path) + + labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) if self.transform is not None: img = self.transform(img) - return img, label, self.X_train[index] + return img, labels, self.X_train[index] def __len__(self): # 122,450 return self.length class AFLW2000(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -47,26 +98,56 @@ self.X_train = filename_list self.y_train = filename_list + self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) - label = torch.FloatTensor(pose) + # Crop the face + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + # k = 0.35 + # x_min -= 0.6 * k * abs(x_max - x_min) + # y_min -= 2 * k * abs(y_max - y_min) + # x_max += 0.6 * k * abs(x_max - x_min) + # y_max += 0.6 * k * abs(y_max - y_min) + # img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + k = 0.15 + x_min -= k * abs(x_max - x_min) + y_min -= 4 * k * abs(y_max - y_min) + x_max += k * abs(x_max - x_min) + y_max += 0.4 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) if self.transform is not None: img = self.transform(img) - return img, label, self.X_train[index] + return img, labels, self.X_train[index] def __len__(self): # 2,000 return self.length -class Pose_300W_LP_binned(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): +class AFLW(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -76,28 +157,234 @@ self.X_train = filename_list self.y_train = filename_list + self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + img = img.convert(self.image_mode) + txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # We get the pose in radians - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) - # And convert to positive degrees. - pose = pose * 180 / np.pi + 90 - - label = torch.FloatTensor(pose) + annot = open(txt_path, 'r') + line = annot.readline().split(' ') + pose = [float(line[1]), float(line[2]), float(line[3])] + # And convert to degrees. + yaw = pose[0] * 180 / np.pi + pitch = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Something weird with the roll in AFLW + # if yaw < 0: + roll *= -1 + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) if self.transform is not None: img = self.transform(img) - return img, label, self.X_train[index] + return img, labels, self.X_train[index] + + def __len__(self): + # train: 18,863 + # test: 1,966 + return self.length + +class AFW(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + img_name = self.X_train[index].split('_')[0] + + img = Image.open(os.path.join(self.data_dir, img_name + self.img_ext)) + img = img.convert(self.image_mode) + txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # We get the pose in degrees + annot = open(txt_path, 'r') + line = annot.readline().split(' ') + yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])] + + # Crop the face + margin = 40 + x_min = float(line[4]) - margin + y_min = float(line[5]) - margin + x_max = float(line[6]) + margin + y_max = float(line[7]) + margin + + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, self.X_train[index] + + def __len__(self): + # Around 200 + return self.length + +class LP_300W_LP(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') + + # Crop the face + # TODO: Change bounding box. + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.35 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + # Get shape binned shape + shape = np.load(shape_path) + + # Convert pt2d to maps of image size + # that have + + labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, self.X_train[index] def __len__(self): # 122,450 return self.length +class BIWI(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.png', annot_ext='.txt', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + '_rgb' + self.img_ext)) + img = img.convert(self.image_mode) + pose_path = os.path.join(self.data_dir, self.y_train[index] + '_pose' + self.annot_ext) + + y_train_list = self.y_train[index].split('/') + bbox_path = os.path.join(self.data_dir, y_train_list[0] + '/dockerface-' + y_train_list[-1] + '_rgb' + self.annot_ext) + + # Load bounding box + bbox = open(bbox_path, 'r') + line = bbox.readline().split(' ') + if len(line) < 4: + x_min, y_min, x_max, y_max = 0, 0, img.size[0], img.size[1] + else: + x_min, y_min, x_max, y_max = [float(line[1]), float(line[2]), float(line[3]), float(line[4])] + bbox.close() + + # Load pose in degrees + pose_annot = open(pose_path, 'r') + R = [] + for line in pose_annot: + line = line.strip('\n').split(' ') + l = [] + if line[0] != '': + for nb in line: + if nb == '': + continue + l.append(float(nb)) + R.append(l) + + R = np.array(R) + T = R[3,:] + R = R[:3,:] + pose_annot.close() + + roll = np.arctan2(R[1][0], R[0][0]) * 180 / np.pi + yaw = np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi + pitch = -np.arctan2(R[2][1], R[2][2]) * 180 / np.pi + + # Loosely crop face + k = 0.35 + x_min -= 0.6 * k * abs(x_max - x_min) + y_min -= k * abs(y_max - y_min) + x_max += 0.6 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # Flip? + # rnd = np.random.random_sample() + # if rnd < 0.5: + # yaw = -yaw + # roll = -roll + # img = img.transpose(Image.FLIP_LEFT_RIGHT) + + # Bin values + bins = np.array(range(-99, 102, 3)) + binned_pose = np.digitize([yaw, pitch, roll], bins) - 1 + + labels = torch.LongTensor(binned_pose) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, self.X_train[index] + + def __len__(self): + # 15,667 + return self.length + + def get_list_from_filenames(file_path): # input: relative path to .txt file with file names # output: list of relative path names -- Gitblit v1.8.0