From 0b8e19c1cc8ad03805d4ca68f32df6e4806a36e8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期五, 08 九月 2017 11:15:10 +0800 Subject: [PATCH] Finetune layer working --- code/hopenet.py | 36 +++++++++++++++++++++++++++++++----- 1 files changed, 31 insertions(+), 5 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index 1b94fa1..274044f 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -1,8 +1,8 @@ import torch import torch.nn as nn -import torchvision.datasets as dsets from torch.autograd import Variable import math +import torch.nn.functional as F # CNN Model (2 conv layer) class Simple_CNN(nn.Module): @@ -58,6 +58,11 @@ self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) + self.softmax = nn.Softmax() + self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) + + self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() + for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels @@ -83,6 +88,12 @@ return nn.Sequential(*layers) + def get_expectation(angle): + angle_pred = F.softmax(angle) + + angle_pred = torch.sum(angle_pred.data * self.idx_tensor, 1) + return angle_pred + def forward(self, x): x = self.conv1(x) x = self.bn1(x) @@ -96,11 +107,26 @@ x = self.avgpool(x) x = x.view(x.size(0), -1) - yaw = self.fc_yaw(x) - pitch = self.fc_pitch(x) - roll = self.fc_roll(x) + pre_yaw = self.fc_yaw(x) + pre_pitch = self.fc_pitch(x) + pre_roll = self.fc_roll(x) - return yaw, pitch, roll + yaw = self.softmax(pre_yaw) + yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) + pitch = self.softmax(pre_pitch) + pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) + roll = self.softmax(pre_roll) + roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) + yaw = yaw.view(yaw.size(0), 1) + pitch = pitch.view(pitch.size(0), 1) + roll = roll.view(roll.size(0), 1) + angles = [] + angles.append(torch.cat([yaw, pitch, roll], 1)) + + for idx in xrange(1): + angles.append(self.fc_finetune(torch.cat((angles[-1], x), 1))) + + return pre_yaw, pre_pitch, pre_roll, angles class Hopenet_shape(nn.Module): # This is just Hopenet with 3 output layers for yaw, pitch and roll. -- Gitblit v1.8.0