From 0b8e19c1cc8ad03805d4ca68f32df6e4806a36e8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期五, 08 九月 2017 11:15:10 +0800 Subject: [PATCH] Finetune layer working --- code/test.py | 38 ++++++++------------------------------ 1 files changed, 8 insertions(+), 30 deletions(-) diff --git a/code/test.py b/code/test.py index b9be11e..8e8fe50 100644 --- a/code/test.py +++ b/code/test.py @@ -100,44 +100,22 @@ label_pitch = labels[:,1].float() label_roll = labels[:,2].float() - yaw, pitch, roll = model(images) - - # Binned predictions - _, yaw_bpred = torch.max(yaw.data, 1) - _, pitch_bpred = torch.max(pitch.data, 1) - _, roll_bpred = torch.max(roll.data, 1) - - # Continuous predictions - yaw_predicted = utils.softmax_temperature(yaw.data, 1) - pitch_predicted = utils.softmax_temperature(pitch.data, 1) - roll_predicted = utils.softmax_temperature(roll.data, 1) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() + pre_yaw, pre_pitch, pre_roll, angles = model(images) + yaw = angles[:,0].cpu().data + pitch = angles[:,1].cpu().data + roll = angles[:,2].cpu().data # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) - pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) - roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) - - # Binned Accuracy - # for er in xrange(n_margins): - # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) - # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) - # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) - - # print label_yaw[0], yaw_bpred[0,0] + yaw_error += torch.sum(torch.abs(yaw - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll - label_roll) * 3) # Save images with pose cube. # TODO: fix for larger batch size if args.save_viz: name = name[0] cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) - #print os.path.join('output/images', name + '.jpg') - #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 - #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 - utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) + utils.plot_pose_cube(cv2_img, yaw[0] * 3 - 99, pitch[0] * 3 - 99, roll[0] * 3 - 99) cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) print('Test error in degrees of the model on the ' + str(total) + -- Gitblit v1.8.0