From 0b8e19c1cc8ad03805d4ca68f32df6e4806a36e8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期五, 08 九月 2017 11:15:10 +0800 Subject: [PATCH] Finetune layer working --- code/train.py | 251 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 251 insertions(+), 0 deletions(-) diff --git a/code/train.py b/code/train.py new file mode 100644 index 0000000..826793d --- /dev/null +++ b/code/train.py @@ -0,0 +1,251 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torchvision +import torch.backends.cudnn as cudnn +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import torch.utils.model_zoo as model_zoo + +model_urls = { + 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', + 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', + 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', + 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', + 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', +} + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', + default=5, type=int) + parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.', + default=5, type=int) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=16, type=int) + parser.add_argument('--lr', dest='lr', help='Base learning rate.', + default=0.001, type=float) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + args = parser.parse_args() + return args + +def get_ignored_params(model): + # Generator function that yields ignored params. + b = [] + b.append(model.conv1) + b.append(model.bn1) + b.append(model.layer1) + b.append(model.layer2) + b.append(model.layer3) + b.append(model.layer4) + for i in range(len(b)): + for j in b[i].modules(): + for k in j.parameters(): + yield k + +def get_non_ignored_params(model): + # Generator function that yields params that will be optimized. + b = [] + b.append(model.fc_yaw) + b.append(model.fc_pitch) + b.append(model.fc_roll) + b.append(model.fc_finetune) + for i in range(len(b)): + for j in b[i].modules(): + for k in j.parameters(): + yield k + +def load_filtered_state_dict(model, snapshot): + # By user apaszke from discuss.pytorch.org + model_dict = model.state_dict() + # 1. filter out unnecessary keys + snapshot = {k: v for k, v in snapshot.items() if k in model_dict} + # 2. overwrite entries in the existing state dict + model_dict.update(snapshot) + # 3. load the new state dict + model.load_state_dict(model_dict) + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + num_epochs = args.num_epochs + num_epochs_ft = args.num_epochs_ft + batch_size = args.batch_size + gpu = args.gpu_id + + if not os.path.exists('output/snapshots'): + os.makedirs('output/snapshots') + + # ResNet101 with 3 outputs + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) + + print 'Loading data.' + + # transformations = transforms.Compose([transforms.Scale(224), + # transforms.RandomCrop(224), + # transforms.ToTensor()]) + + transformations = transforms.Compose([transforms.Scale(250), + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, + transformations) + train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=batch_size, + shuffle=True, + num_workers=2) + + model.cuda(gpu) + criterion = nn.CrossEntropyLoss().cuda() + reg_criterion = nn.MSELoss().cuda() + # Regression loss coefficient + alpha = 0.01 + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, + {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], + lr = args.lr) + + print 'Ready to train network.' + + print 'First phase of training.' + for epoch in range(num_epochs): + for i, (images, labels, name) in enumerate(train_loader): + images = Variable(images.cuda(gpu)) + label_yaw = Variable(labels[:,0].cuda(gpu)) + label_pitch = Variable(labels[:,1].cuda(gpu)) + label_roll = Variable(labels[:,2].cuda(gpu)) + + optimizer.zero_grad() + model.zero_grad() + + pre_yaw, pre_pitch, pre_roll, angles = model(images) + + # Cross entropy loss + loss_yaw = criterion(pre_yaw, label_yaw) + loss_pitch = criterion(pre_pitch, label_pitch) + loss_roll = criterion(pre_roll, label_roll) + + # MSE loss + yaw_predicted = F.softmax(pre_yaw) + pitch_predicted = F.softmax(pre_pitch) + roll_predicted = F.softmax(pre_roll) + + yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) + loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + + # Total loss + loss_yaw += alpha * loss_reg_yaw + loss_pitch += alpha * loss_reg_pitch + loss_roll += alpha * loss_reg_roll + + loss_seq = [loss_yaw, loss_pitch, loss_roll] + grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + torch.autograd.backward(loss_seq, grad_seq) + optimizer.step() + + if (i+1) % 100 == 0: + print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' + %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) + # if epoch == 0: + # torch.save(model.state_dict(), + # 'output/snapshots/hopenet50_epoch_'+ str(i+1) + '.pkl') + + # Save models at numbered epochs. + if epoch % 1 == 0 and epoch < num_epochs: + print 'Taking snapshot...' + torch.save(model.state_dict(), + 'output/snapshots/hopenet50_epoch_'+ str(epoch+1) + '.pkl') + + print 'Second phase of training (finetuning layer).' + for epoch in range(num_epochs_ft): + for i, (images, labels, name) in enumerate(train_loader): + images = Variable(images.cuda(gpu)) + label_yaw = Variable(labels[:,0].cuda(gpu)) + label_pitch = Variable(labels[:,1].cuda(gpu)) + label_roll = Variable(labels[:,2].cuda(gpu)) + label_angles = Variable(labels[:,:3].cuda(gpu)) + + optimizer.zero_grad() + model.zero_grad() + + pre_yaw, pre_pitch, pre_roll, angles = model(images) + + # Cross entropy loss + loss_yaw = criterion(pre_yaw, label_yaw) + loss_pitch = criterion(pre_pitch, label_pitch) + loss_roll = criterion(pre_roll, label_roll) + + # MSE loss + yaw_predicted = F.softmax(pre_yaw) + pitch_predicted = F.softmax(pre_pitch) + roll_predicted = F.softmax(pre_roll) + + yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) + loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + + # Total loss + loss_yaw += alpha * loss_reg_yaw + loss_pitch += alpha * loss_reg_pitch + loss_roll += alpha * loss_reg_roll + + # Finetuning loss + loss_angles = reg_criterion(angles[0], label_angles.float()) + + loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] + grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + torch.autograd.backward(loss_seq, grad_seq) + optimizer.step() + + if (i+1) % 100 == 0: + print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f' + %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) + # if epoch == 0: + # torch.save(model.state_dict(), + # 'output/snapshots/hopenet50_iter_'+ str(i+1) + '.pkl') + + # Save models at numbered epochs. + if epoch % 1 == 0 and epoch < num_epochs_ft - 1: + print 'Taking snapshot...' + torch.save(model.state_dict(), + 'output/snapshots/hopenet50_epoch_'+ str(num_epochs+epoch+1) + '.pkl') + + + # Save the final Trained Model + torch.save(model.state_dict(), 'output/snapshots/hopenet50_epoch_' + str(num_epochs+epoch+1) + '.pkl') -- Gitblit v1.8.0