From 0be0ecf0a8fc6df1f9e354f8aea12b7008f658f1 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期三, 27 九月 2017 06:21:54 +0800 Subject: [PATCH] hopenet experiments --- code/hopenet.py | 90 +++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 90 insertions(+), 0 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index c6bf0db..de2f4ec 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -340,3 +340,93 @@ angles.append(preangles) return pre_yaw, pre_pitch, pre_roll, angles, sr_output + +class Hopenet_new(nn.Module): + # This is just Hopenet with 3 output layers for yaw, pitch and roll. + def __init__(self, block, layers, num_bins): + self.inplanes = 64 + super(Hopenet_new, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7) + self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) + self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) + self.fc_roll = nn.Linear(512 * block.expansion, num_bins) + + self.softmax = nn.Softmax() + self.fc_finetune_new = nn.Linear(512 * block.expansion + 256 * block.expansion + 3, 3) + self.conv1x1 = nn.Conv2d(1024, 64, kernel_size = 1, stride = 1, bias=False) + self.maxpool_interm = nn.MaxPool2d(kernel_size=5, stride=3, padding=1) + + self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x_interm = self.conv1x1(x) + x_interm = self.relu(x_interm) + x_interm = self.maxpool_interm(x_interm) + x_interm = x_interm.view(x_interm.size(0), -1) + + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + pre_yaw = self.fc_yaw(x) + pre_pitch = self.fc_pitch(x) + pre_roll = self.fc_roll(x) + + yaw = self.softmax(pre_yaw) + yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 + pitch = self.softmax(pre_pitch) + pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 + roll = self.softmax(pre_roll) + roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 + yaw = yaw.view(yaw.size(0), 1) + pitch = pitch.view(pitch.size(0), 1) + roll = roll.view(roll.size(0), 1) + preangles = torch.cat([yaw, pitch, roll], 1) + + # angles predicts the residual + residuals = self.fc_finetune_new(torch.cat((preangles, x_interm, x), 1)) + final_angles = preangles + residuals + + return pre_yaw, pre_pitch, pre_roll, preangles, final_angles -- Gitblit v1.8.0