From 175dff7849b3cdb342b48253bba401a7a9ef0e87 Mon Sep 17 00:00:00 2001
From: Nataniel Ruiz <nruiz9@gatech.edu>
Date: 星期一, 04 三月 2019 08:14:53 +0800
Subject: [PATCH] Update README.md
---
code/hopenet.py | 109 +++++++++++++++++++++++-------------------------------
1 files changed, 47 insertions(+), 62 deletions(-)
diff --git a/code/hopenet.py b/code/hopenet.py
index 63a24cd..c9e0b74 100644
--- a/code/hopenet.py
+++ b/code/hopenet.py
@@ -4,44 +4,10 @@
import math
import torch.nn.functional as F
-# CNN Model (2 conv layer)
-class Simple_CNN(nn.Module):
- def __init__(self):
- super(Simple_CNN, self).__init__()
- self.layer1 = nn.Sequential(
- nn.Conv2d(3, 64, kernel_size=3, padding=0),
- nn.BatchNorm2d(64),
- nn.ReLU(),
- nn.MaxPool2d(2))
- self.layer2 = nn.Sequential(
- nn.Conv2d(64, 128, kernel_size=3, padding=0),
- nn.BatchNorm2d(128),
- nn.ReLU(),
- nn.MaxPool2d(2))
- self.layer3 = nn.Sequential(
- nn.Conv2d(128, 256, kernel_size=3, padding=0),
- nn.BatchNorm2d(256),
- nn.ReLU(),
- nn.MaxPool2d(2))
- self.layer4 = nn.Sequential(
- nn.Conv2d(256, 512, kernel_size=3, padding=0),
- nn.BatchNorm2d(512),
- nn.ReLU(),
- nn.MaxPool2d(2))
- self.fc = nn.Linear(17*17*512, 3)
-
- def forward(self, x):
- out = self.layer1(x)
- out = self.layer2(out)
- out = self.layer3(out)
- out = self.layer4(out)
- out = out.view(out.size(0), -1)
- out = self.fc(out)
- return out
-
class Hopenet(nn.Module):
- # This is just Hopenet with 3 output layers for yaw, pitch and roll.
- def __init__(self, block, layers, num_bins, iter_ref):
+ # Hopenet with 3 output layers for yaw, pitch and roll
+ # Predicts Euler angles by binning and regression with the expected value
+ def __init__(self, block, layers, num_bins):
self.inplanes = 64
super(Hopenet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
@@ -58,12 +24,8 @@
self.fc_pitch = nn.Linear(512 * block.expansion, num_bins)
self.fc_roll = nn.Linear(512 * block.expansion, num_bins)
- self.softmax = nn.Softmax()
+ # Vestigial layer from previous experiments
self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3)
-
- self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda()
-
- self.iter_ref = iter_ref
for m in self.modules():
if isinstance(m, nn.Conv2d):
@@ -107,27 +69,10 @@
pre_pitch = self.fc_pitch(x)
pre_roll = self.fc_roll(x)
- yaw = self.softmax(pre_yaw)
- yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True)
- pitch = self.softmax(pre_pitch)
- pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True)
- roll = self.softmax(pre_roll)
- roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True)
- yaw = yaw.view(yaw.size(0), 1)
- pitch = pitch.view(pitch.size(0), 1)
- roll = roll.view(roll.size(0), 1)
- angles = []
- preangles = torch.cat([yaw, pitch, roll], 1)
- angles.append(preangles)
-
- # angles predicts the residual
- for idx in xrange(self.iter_ref):
- angles.append(self.fc_finetune(torch.cat((preangles, x), 1)))
-
- return pre_yaw, pre_pitch, pre_roll, angles
+ return pre_yaw, pre_pitch, pre_roll
class ResNet(nn.Module):
-
+ # ResNet for regression of 3 Euler angles.
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
@@ -182,5 +127,45 @@
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc_angles(x)
-
return x
+
+class AlexNet(nn.Module):
+ # AlexNet laid out as a Hopenet - classify Euler angles in bins and
+ # regress the expected value.
+ def __init__(self, num_bins):
+ super(AlexNet, self).__init__()
+ self.features = nn.Sequential(
+ nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
+ nn.ReLU(inplace=True),
+ nn.MaxPool2d(kernel_size=3, stride=2),
+ nn.Conv2d(64, 192, kernel_size=5, padding=2),
+ nn.ReLU(inplace=True),
+ nn.MaxPool2d(kernel_size=3, stride=2),
+ nn.Conv2d(192, 384, kernel_size=3, padding=1),
+ nn.ReLU(inplace=True),
+ nn.Conv2d(384, 256, kernel_size=3, padding=1),
+ nn.ReLU(inplace=True),
+ nn.Conv2d(256, 256, kernel_size=3, padding=1),
+ nn.ReLU(inplace=True),
+ nn.MaxPool2d(kernel_size=3, stride=2),
+ )
+ self.classifier = nn.Sequential(
+ nn.Dropout(),
+ nn.Linear(256 * 6 * 6, 4096),
+ nn.ReLU(inplace=True),
+ nn.Dropout(),
+ nn.Linear(4096, 4096),
+ nn.ReLU(inplace=True),
+ )
+ self.fc_yaw = nn.Linear(4096, num_bins)
+ self.fc_pitch = nn.Linear(4096, num_bins)
+ self.fc_roll = nn.Linear(4096, num_bins)
+
+ def forward(self, x):
+ x = self.features(x)
+ x = x.view(x.size(0), 256 * 6 * 6)
+ x = self.classifier(x)
+ yaw = self.fc_yaw(x)
+ pitch = self.fc_pitch(x)
+ roll = self.fc_roll(x)
+ return yaw, pitch, roll
--
Gitblit v1.8.0