From 18a21d4b07c581a8954b08518115fb035c712b28 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期二, 08 八月 2017 07:34:09 +0800 Subject: [PATCH] Added new correct cropping for training and smoothing for video. --- code/datasets.py | 81 +++++++++++++++++++++++++++++++++++++--- 1 files changed, 75 insertions(+), 6 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index 030059f..06cd433 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -81,23 +81,92 @@ def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) img = img.convert('RGB') + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # Crop the face + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.15 + x_min -= k * abs(x_max - x_min) + y_min -= 4 * k * abs(y_max - y_min) + x_max += k * abs(x_max - x_min) + y_max += 0.4 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) - # And convert to positive degrees. - pose = pose * 180 / np.pi + 90 - - label = torch.FloatTensor(pose) + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) if self.transform is not None: img = self.transform(img) - return img, label, self.X_train[index] + return img, labels, self.X_train[index] def __len__(self): # 122,450 return self.length +class AFLW2000_binned(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert('RGB') + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # Crop the face + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.15 + x_min -= k * abs(x_max - x_min) + y_min -= 4 * k * abs(y_max - y_min) + x_max += k * abs(x_max - x_min) + y_max += 0.4 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, self.X_train[index] + + def __len__(self): + # 2,000 + return self.length + def get_list_from_filenames(file_path): # input: relative path to .txt file with file names # output: list of relative path names -- Gitblit v1.8.0