From 18a21d4b07c581a8954b08518115fb035c712b28 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期二, 08 八月 2017 07:34:09 +0800
Subject: [PATCH] Added new correct cropping for training and smoothing for video.

---
 code/datasets.py |   81 +++++++++++++++++++++++++++++++++++++---
 1 files changed, 75 insertions(+), 6 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index 030059f..06cd433 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -81,23 +81,92 @@
     def __getitem__(self, index):
         img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
         img = img.convert('RGB')
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+
+        # Crop the face
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        k = 0.15
+        x_min -= k * abs(x_max - x_min)
+        y_min -= 4 * k * abs(y_max - y_min)
+        x_max += k * abs(x_max - x_min)
+        y_max += 0.4 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
         # We get the pose in radians
-        pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
-        # And convert to positive degrees.
-        pose = pose * 180 / np.pi + 90
-
-        label = torch.FloatTensor(pose)
+        pose = utils.get_ypr_from_mat(mat_path)
+        # And convert to degrees.
+        pitch = pose[0] * 180 / np.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
 
         if self.transform is not None:
             img = self.transform(img)
 
-        return img, label, self.X_train[index]
+        return img, labels, self.X_train[index]
 
     def __len__(self):
         # 122,450
         return self.length
 
+class AFLW2000_binned(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
+        img = img.convert('RGB')
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+
+        # Crop the face
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        k = 0.15
+        x_min -= k * abs(x_max - x_min)
+        y_min -= 4 * k * abs(y_max - y_min)
+        x_max += k * abs(x_max - x_min)
+        y_max += 0.4 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # We get the pose in radians
+        pose = utils.get_ypr_from_mat(mat_path)
+        # And convert to degrees.
+        pitch = pose[0] * 180 / np.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, self.X_train[index]
+
+    def __len__(self):
+        # 2,000
+        return self.length
+
 def get_list_from_filenames(file_path):
     # input:    relative path to .txt file with file names
     # output:   list of relative path names

--
Gitblit v1.8.0