From 18a21d4b07c581a8954b08518115fb035c712b28 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期二, 08 八月 2017 07:34:09 +0800 Subject: [PATCH] Added new correct cropping for training and smoothing for video. --- code/test_resnet_bins.py | 46 ++++++++++++++++++++++++++++++++++------------ 1 files changed, 34 insertions(+), 12 deletions(-) diff --git a/code/test_resnet_bins.py b/code/test_resnet_bins.py index f5be4f8..00d2109 100644 --- a/code/test_resnet_bins.py +++ b/code/test_resnet_bins.py @@ -31,6 +31,8 @@ default='', type=str) parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) args = parser.parse_args() @@ -44,8 +46,12 @@ gpu = args.gpu_id snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') - # ResNet50 with 3 outputs. - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) print 'Loading snapshot.' # Load snapshot @@ -84,38 +90,54 @@ for i, (images, labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) - total += labels.size(0) label_yaw = labels[:,0] label_pitch = labels[:,1] label_roll = labels[:,2] yaw, pitch, roll = model(images) - # _, yaw_predicted = torch.max(yaw.data, 1) - # _, pitch_predicted = torch.max(pitch.data, 1) - # _, roll_predicted = torch.max(roll.data, 1) + + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) yaw_predicted = F.softmax(yaw) pitch_predicted = F.softmax(pitch) roll_predicted = F.softmax(roll) + # Continuous predictions yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) + # Mean absolute error yaw_error += abs(yaw_predicted - label_yaw[0]) * 3 pitch_error += abs(pitch_predicted - label_pitch[0]) * 3 roll_error += abs(roll_predicted - label_roll[0]) * 3 - # for er in xrange(0,n_margins): - # yaw_correct[er] += (label_yaw[0] in range(yaw_predicted[0,0] - er, yaw_predicted[0,0] + er + 1)) - # pitch_correct[er] += (label_pitch[0] in range(pitch_predicted[0,0] - er, pitch_predicted[0,0] + er + 1)) - # roll_correct[er] += (label_roll[0] in range(roll_predicted[0,0] - er, roll_predicted[0,0] + er + 1)) + # Binned Accuracy + # for er in xrange(n_margins): + # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) + # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) + # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) - # print label_yaw[0], yaw_predicted[0,0] - # 4 -> 15 + # print label_yaw[0], yaw_bpred[0,0] + + # Save images with pose cube. + if args.save_viz: + name = name[0] + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + #print os.path.join('output/images', name + '.jpg') + #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 + #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 + utils.plot_pose_cube(cv2_img, yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + print('Test error in degrees of the model on the ' + str(total) + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, pitch_error / total, roll_error / total)) + + # Binned accuracy # for idx in xrange(len(yaw_correct)): # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total -- Gitblit v1.8.0