From 18a21d4b07c581a8954b08518115fb035c712b28 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期二, 08 八月 2017 07:34:09 +0800 Subject: [PATCH] Added new correct cropping for training and smoothing for video. --- code/train_resnet_bins.py | 26 +++++++++++++++----------- 1 files changed, 15 insertions(+), 11 deletions(-) diff --git a/code/train_resnet_bins.py b/code/train_resnet_bins.py index 6b07747..dab3800 100644 --- a/code/train_resnet_bins.py +++ b/code/train_resnet_bins.py @@ -91,9 +91,13 @@ if not os.path.exists('output/snapshots'): os.makedirs('output/snapshots') - # ResNet50 with 3 outputs. - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) + # ResNet101 with 3 outputs + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 + model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet18'])) print 'Loading data.' @@ -109,15 +113,15 @@ model.cuda(gpu) criterion = nn.CrossEntropyLoss() - # optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, - # {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], - # lr = args.lr) + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, + {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], + lr = args.lr) # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, # {'params': get_non_ignored_params(model), 'lr': args.lr}], # lr = args.lr, momentum=0.9) - optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr}, - {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], - lr = args.lr) + # optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr}, + # {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], + # lr = args.lr) print 'Ready to train network.' @@ -147,7 +151,7 @@ if epoch % 1 == 0 and epoch < num_epochs - 1: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/resnet50_binned_RMSprop_epoch_' + str(epoch+1) + '.pkl') + 'output/snapshots/resnet18_cr_epoch_'+ str(epoch+1) + '.pkl') # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/resnet50_binned_RMSprop_epoch_' + str(epoch+1) + '.pkl') + torch.save(model.state_dict(), 'output/snapshots/resnet18_cr_epoch_' + str(epoch+1) + '.pkl') -- Gitblit v1.8.0