From 1ddaaf685a3c5febca32305fc588f982b5e4cdaa Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 28 九月 2017 06:21:15 +0800
Subject: [PATCH] Final code before submission

---
 code/datasets.py |   70 +++--------------------------------
 1 files changed, 6 insertions(+), 64 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index aee5246..c7fc7f7 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -333,70 +333,10 @@
         y_max += 0.6 * k * abs(y_max - y_min)
         img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
-        ds = 8
+        ds = 3
         original_size = img.size
         img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
         img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
-
-        # We get the pose in radians
-        pose = utils.get_ypr_from_mat(mat_path)
-        # And convert to degrees.
-        pitch = pose[0] * 180 / np.pi
-        yaw = pose[1] * 180 / np.pi
-        roll = pose[2] * 180 / np.pi
-        # Bin values
-        bins = np.array(range(-99, 102, 3))
-        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
-        cont_labels = torch.FloatTensor([yaw, pitch, roll])
-
-        if self.transform is not None:
-            img = self.transform(img)
-
-        return img, labels, cont_labels, self.X_train[index]
-
-    def __len__(self):
-        # 2,000
-        return self.length
-
-class AFLW2000_random_ds(Dataset):
-    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
-        self.data_dir = data_dir
-        self.transform = transform
-        self.img_ext = img_ext
-        self.annot_ext = annot_ext
-
-        filename_list = get_list_from_filenames(filename_path)
-
-        self.X_train = filename_list
-        self.y_train = filename_list
-        self.image_mode = image_mode
-        self.length = len(filename_list)
-
-    def __getitem__(self, index):
-        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
-        img = img.convert(self.image_mode)
-        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
-
-        # Crop the face
-        pt2d = utils.get_pt2d_from_mat(mat_path)
-        x_min = min(pt2d[0,:])
-        y_min = min(pt2d[1,:])
-        x_max = max(pt2d[0,:])
-        y_max = max(pt2d[1,:])
-
-        k = 0.20
-        x_min -= 2 * k * abs(x_max - x_min)
-        y_min -= 2 * k * abs(y_max - y_min)
-        x_max += 2 * k * abs(x_max - x_min)
-        y_max += 0.6 * k * abs(y_max - y_min)
-        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
-
-        rnd = np.random.random_sample()
-        if rnd < 0.5:
-            ds = 10
-            original_size = img.size
-            img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
-            img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
 
         # We get the pose in radians
         pose = utils.get_ypr_from_mat(mat_path)
@@ -633,9 +573,11 @@
         R = R[:3,:]
         pose_annot.close()
 
-        roll = np.arctan2(R[1][0], R[0][0]) * 180 / np.pi
-        yaw = np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi
-        pitch = -np.arctan2(R[2][1], R[2][2]) * 180 / np.pi
+        R = np.transpose(R)
+
+        roll = -np.arctan2(R[1][0], R[0][0]) * 180 / np.pi
+        yaw = -np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi
+        pitch = np.arctan2(R[2][1], R[2][2]) * 180 / np.pi
 
         # Loosely crop face
         k = 0.35

--
Gitblit v1.8.0