From 1ddaaf685a3c5febca32305fc588f982b5e4cdaa Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 28 九月 2017 06:21:15 +0800
Subject: [PATCH] Final code before submission

---
 code/datasets.py |  173 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++-
 1 files changed, 168 insertions(+), 5 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index 17f1899..c7fc7f7 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -6,6 +6,7 @@
 from PIL import Image, ImageFilter
 
 import utils
+from torchvision import transforms
 
 def stack_grayscale_tensor(tensor):
     tensor = torch.cat([tensor, tensor, tensor], 0)
@@ -80,6 +81,166 @@
             img = self.transform(img)
 
         return img, labels, cont_labels, self.X_train[index]
+
+    def __len__(self):
+        # 122,450
+        return self.length
+
+class Pose_300W_LP_random_ds(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.image_mode = image_mode
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
+        img = img.convert(self.image_mode)
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+        shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
+
+        # Crop the face
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        # k = 0.2 to 0.40
+        k = np.random.random_sample() * 0.2 + 0.2
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # We get the pose in radians
+        pose = utils.get_ypr_from_mat(mat_path)
+        # And convert to degrees.
+        pitch = pose[0] * 180 / np.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+
+        ds = np.random.randint(1,11)
+        original_size = img.size
+        img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
+        img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
+
+        # Flip?
+        rnd = np.random.random_sample()
+        if rnd < 0.5:
+            yaw = -yaw
+            roll = -roll
+            img = img.transpose(Image.FLIP_LEFT_RIGHT)
+
+        # Blur?
+        rnd = np.random.random_sample()
+        if rnd < 0.05:
+            img = img.filter(ImageFilter.BLUR)
+
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
+
+        # Get shape
+        shape = np.load(shape_path)
+
+        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, cont_labels, self.X_train[index]
+
+    def __len__(self):
+        # 122,450
+        return self.length
+
+class Pose_300W_LP_SR(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.image_mode = image_mode
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
+        img = img.convert(self.image_mode)
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+
+        # Crop the face
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        # k = 0.2 to 0.40
+        k = np.random.random_sample() * 0.2 + 0.2
+        x_min -= 0.6 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 0.6 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # We get the pose in radians
+        pose = utils.get_ypr_from_mat(mat_path)
+        # And convert to degrees.
+        pitch = pose[0] * 180 / np.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+
+        rnd = np.random.random_sample()
+        if rnd < 0.5:
+            ds = 10
+            original_size = img.size
+            img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
+            img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
+
+        # Flip?
+        rnd = np.random.random_sample()
+        if rnd < 0.5:
+            yaw = -yaw
+            roll = -roll
+            img = img.transpose(Image.FLIP_LEFT_RIGHT)
+
+        # Blur?
+        rnd = np.random.random_sample()
+        if rnd < 0.05:
+            img = img.filter(ImageFilter.BLUR)
+
+        img_ycc = img.convert('YCbCr')
+
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
+
+        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
+
+        # Transforms
+        img = transforms.Scale(240)(img)
+        img = transforms.RandomCrop(224)(img)
+        img_ycc = img.convert('YCbCr')
+        img = transforms.ToTensor()
+        img_ycc = transforms.ToTensor()
+
+        return img, img_ycc, labels, cont_labels, self.X_train[index]
 
     def __len__(self):
         # 122,450
@@ -172,10 +333,10 @@
         y_max += 0.6 * k * abs(y_max - y_min)
         img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
-        ds = 5
+        ds = 3
         original_size = img.size
-        img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=0)
-        img = img.resize((original_size[0], original_size[1]), resample=0)
+        img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST)
+        img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST)
 
         # We get the pose in radians
         pose = utils.get_ypr_from_mat(mat_path)
@@ -412,9 +573,11 @@
         R = R[:3,:]
         pose_annot.close()
 
+        R = np.transpose(R)
+
         roll = -np.arctan2(R[1][0], R[0][0]) * 180 / np.pi
-        yaw = np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi
-        pitch = -np.arctan2(R[2][1], R[2][2]) * 180 / np.pi
+        yaw = -np.arctan2(-R[2][0], np.sqrt(R[2][1] ** 2 + R[2][2] ** 2)) * 180 / np.pi
+        pitch = np.arctan2(R[2][1], R[2][2]) * 180 / np.pi
 
         # Loosely crop face
         k = 0.35

--
Gitblit v1.8.0