From 2c764e41e2fde6244b87da58d12c40d09a14fcb4 Mon Sep 17 00:00:00 2001 From: natanielruiz <nruiz9@gatech.edu> Date: 星期一, 30 十月 2017 06:49:01 +0800 Subject: [PATCH] Next --- code/test_alexnet.py | 21 ++++------ code/test_on_video.py | 24 +++++------- code/test_on_video_noconf.py | 29 ++++++-------- 3 files changed, 32 insertions(+), 42 deletions(-) diff --git a/code/test_alexnet.py b/code/test_alexnet.py index 7a3989a..529d566 100644 --- a/code/test_alexnet.py +++ b/code/test_alexnet.py @@ -1,4 +1,9 @@ +import sys, os, argparse + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,15 +13,7 @@ import torchvision import torch.nn.functional as F -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils +import datasets, hopenet, utils def parse_args(): """Parse input arguments.""" @@ -134,8 +131,7 @@ pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch)) roll_error += torch.sum(torch.abs(roll_predicted - label_roll)) - # Save images with pose cube. - # TODO: fix for larger batch size + # Save first image in batch with pose cube or axis. if args.save_viz: name = name[0] if args.dataset == 'BIWI': @@ -145,7 +141,8 @@ if args.batch_size == 1: error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll))) cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1) - utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0]) + # utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0], size=100) + utils.draw_axis(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0], tdx = 200, tdy= 200, size=100) cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) print('Test error in degrees of the model on the ' + str(total) + diff --git a/code/test_on_video.py b/code/test_on_video.py index 38fe798..c4172da 100644 --- a/code/test_on_video.py +++ b/code/test_on_video.py @@ -1,4 +1,9 @@ +import sys, os, argparse + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,10 +13,6 @@ import torchvision import torch.nn.functional as F from PIL import Image - -import cv2 -import matplotlib.pyplot as plt -import sys, os, argparse import datasets, hopenet, utils @@ -46,10 +47,8 @@ if not os.path.exists(args.video_path): sys.exit('Video does not exist') - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) print 'Loading snapshot.' # Load snapshot @@ -154,15 +153,12 @@ img_shape = img.size() img = img.view(1, img_shape[0], img_shape[1], img_shape[2]) img = Variable(img).cuda(gpu) + yaw, pitch, roll, angles = model(img) - yaw_predicted = F.softmax(yaw) - pitch_predicted = F.softmax(pitch) - roll_predicted = F.softmax(roll) - # Get continuous predictions in degrees. - yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) * 3 - 99 - pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) * 3 - 99 - roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) * 3 - 99 + yaw_predicted = angles[:,0].data[0].cpu() + pitch_predicted = angles[:,1].data[0].cpu() + roll_predicted = angles[:,2].data[0].cpu() # Print new frame with cube and axis txt_out.write(str(frame_num) + ' %f %f %f\n' % (yaw_predicted, pitch_predicted, roll_predicted)) # utils.plot_pose_cube(frame, yaw_predicted, pitch_predicted, roll_predicted, (x_min + x_max) / 2, (y_min + y_max) / 2, size = bbox_width) diff --git a/code/test_on_video_noconf.py b/code/test_on_video_noconf.py index e040de7..b6a8d2c 100644 --- a/code/test_on_video_noconf.py +++ b/code/test_on_video_noconf.py @@ -1,4 +1,9 @@ +import sys, os, argparse + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,10 +13,6 @@ import torchvision import torch.nn.functional as F from PIL import Image - -import cv2 -import matplotlib.pyplot as plt -import sys, os, argparse import datasets, hopenet, utils @@ -47,10 +48,8 @@ if not os.path.exists(args.video_path): sys.exit('Video does not exist') - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) + # ResNet50 structure + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) print 'Loading snapshot.' # Load snapshot @@ -145,7 +144,7 @@ y_min = max(y_min, 0) x_max = min(frame.shape[1], x_max) y_max = min(frame.shape[0], y_max) - # Crop image + # Crop face loosely img = frame[y_min:y_max,x_min:x_max] img = Image.fromarray(img) @@ -154,15 +153,13 @@ img_shape = img.size() img = img.view(1, img_shape[0], img_shape[1], img_shape[2]) img = Variable(img).cuda(gpu) + yaw, pitch, roll, angles = model(img) - yaw_predicted = F.softmax(yaw) - pitch_predicted = F.softmax(pitch) - roll_predicted = F.softmax(roll) - # Get continuous predictions in degrees. - yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) * 3 - 99 - pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) * 3 - 99 - roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) * 3 - 99 + yaw_predicted = angles[:,0].data[0].cpu() + pitch_predicted = angles[:,1].data[0].cpu() + roll_predicted = angles[:,2].data[0].cpu() + # Print new frame with cube and axis txt_out.write(str(frame_num) + ' %f %f %f\n' % (yaw_predicted, pitch_predicted, roll_predicted)) # utils.plot_pose_cube(frame, yaw_predicted, pitch_predicted, roll_predicted, (x_min + x_max) / 2, (y_min + y_max) / 2, size = bbox_width) -- Gitblit v1.8.0