From 2eb13d63b15a8ac908d6fa324c7f3d19141ca570 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期六, 12 八月 2017 08:57:15 +0800 Subject: [PATCH] Temperature softmax and 10 shape PCA regression. --- code/hopenet.py | 26 +++ code/test_resnet_shape.py | 145 ++++++++++++++++++++ code/test_resnet_bins.py | 16 - code/train_resnet_shape.py | 53 ++++-- code/utils.py | 5 practice/aflw_example.py | 133 +++++++++++++++++++ 6 files changed, 345 insertions(+), 33 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index 9ba8f04..1b94fa1 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -106,7 +106,7 @@ # This is just Hopenet with 3 output layers for yaw, pitch and roll. def __init__(self, block, layers, num_bins, shape_bins): self.inplanes = 64 - super(Hopenet, self).__init__() + super(Hopenet_shape, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) @@ -120,7 +120,16 @@ self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) + self.fc_shape_0 = nn.Linear(512 * block.expansion, shape_bins) self.fc_shape_1 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_2 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_3 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_4 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_5 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_6 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_7 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_8 = nn.Linear(512 * block.expansion, shape_bins) + self.fc_shape_9 = nn.Linear(512 * block.expansion, shape_bins) for m in self.modules(): if isinstance(m, nn.Conv2d): @@ -163,6 +172,17 @@ yaw = self.fc_yaw(x) pitch = self.fc_pitch(x) roll = self.fc_roll(x) - shape_1 = self.fc_shape_1(x) - return yaw, pitch, roll, shape_1 + shape = [] + shape.append(self.fc_shape_0(x)) + shape.append(self.fc_shape_1(x)) + shape.append(self.fc_shape_2(x)) + shape.append(self.fc_shape_3(x)) + shape.append(self.fc_shape_4(x)) + shape.append(self.fc_shape_5(x)) + shape.append(self.fc_shape_6(x)) + shape.append(self.fc_shape_7(x)) + shape.append(self.fc_shape_8(x)) + shape.append(self.fc_shape_9(x)) + + return yaw, pitch, roll, shape diff --git a/code/test_resnet_bins.py b/code/test_resnet_bins.py index 699c9c9..4b1a655 100644 --- a/code/test_resnet_bins.py +++ b/code/test_resnet_bins.py @@ -103,18 +103,14 @@ _, pitch_bpred = torch.max(pitch.data, 1) _, roll_bpred = torch.max(roll.data, 1) - yaw_predicted = F.softmax(yaw) - pitch_predicted = F.softmax(pitch) - roll_predicted = F.softmax(roll) - # Continuous predictions - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + yaw_predicted = utils.softmax_temperature(yaw.data, 1) + pitch_predicted = utils.softmax_temperature(pitch.data, 1) + roll_predicted = utils.softmax_temperature(roll.data, 1) - yaw_predicted = yaw_predicted.cpu() - pitch_predicted = pitch_predicted.cpu() - roll_predicted = roll_predicted.cpu() + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() # Mean absolute error yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) diff --git a/code/test_resnet_shape.py b/code/test_resnet_shape.py new file mode 100644 index 0000000..b35c64f --- /dev/null +++ b/code/test_resnet_shape.py @@ -0,0 +1,145 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') + + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet_shape(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 60) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + + print 'Loading snapshot.' + # Load snapshot + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224), + transforms.RandomCrop(224), transforms.ToTensor()]) + + pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list, + transformations) + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + n_margins = 20 + yaw_correct = np.zeros(n_margins) + pitch_correct = np.zeros(n_margins) + roll_correct = np.zeros(n_margins) + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + total += labels.size(0) + label_yaw = labels[:,0].float() + label_pitch = labels[:,1].float() + label_roll = labels[:,2].float() + + yaw, pitch, roll, shape = model(images) + + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) + + # Continuous predictions + yaw_predicted = utils.softmax_temperature(yaw.data, 1) + pitch_predicted = utils.softmax_temperature(pitch.data, 1) + roll_predicted = utils.softmax_temperature(roll.data, 1) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() + + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) + + # Binned Accuracy + # for er in xrange(n_margins): + # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) + # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) + # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) + + # print label_yaw[0], yaw_bpred[0,0] + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + #print os.path.join('output/images', name + '.jpg') + #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 + #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 + utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + + # Binned accuracy + # for idx in xrange(len(yaw_correct)): + # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/train_resnet_shape.py b/code/train_resnet_shape.py index c874fae..f6baddf 100644 --- a/code/train_resnet_shape.py +++ b/code/train_resnet_shape.py @@ -66,7 +66,17 @@ b.append(model.fc_yaw) b.append(model.fc_pitch) b.append(model.fc_roll) + b.append(model.fc_shape_0) b.append(model.fc_shape_1) + b.append(model.fc_shape_2) + b.append(model.fc_shape_3) + b.append(model.fc_shape_4) + b.append(model.fc_shape_5) + b.append(model.fc_shape_6) + b.append(model.fc_shape_7) + b.append(model.fc_shape_8) + b.append(model.fc_shape_9) + for i in range(len(b)): for j in b[i].modules(): for k in j.parameters(): @@ -96,7 +106,7 @@ # ResNet101 with 3 outputs # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet_shape(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 60) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) @@ -114,8 +124,8 @@ num_workers=2) model.cuda(gpu) - criterion = nn.CrossEntropyLoss() - reg_criterion = nn.MSELoss() + criterion = nn.CrossEntropyLoss().cuda(gpu) + reg_criterion = nn.MSELoss().cuda(gpu) # Regression loss coefficient alpha = 0.1 lsm = nn.Softmax() @@ -124,21 +134,23 @@ idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, - {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], + {'params': get_non_ignored_params(model), 'lr': args.lr}], lr = args.lr) print 'Ready to train network.' for epoch in range(num_epochs): for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images).cuda(gpu) - label_yaw = Variable(labels[:,0]).cuda(gpu) - label_pitch = Variable(labels[:,1]).cuda(gpu) - label_roll = Variable(labels[:,2]).cuda(gpu) - label_shape_1 = Variable(labels[:,3]).cuda(gpu) + images = Variable(images.cuda(gpu)) + label_yaw = Variable(labels[:,0].cuda(gpu)) + label_pitch = Variable(labels[:,1].cuda(gpu)) + label_roll = Variable(labels[:,2].cuda(gpu)) + label_shape = Variable(labels[:,3:].cuda(gpu)) optimizer.zero_grad() - yaw, pitch, roll, shape_1 = model(images) + model.zero_grad() + + yaw, pitch, roll, shape = model(images) # Cross entropy loss loss_yaw = criterion(yaw, label_yaw) @@ -158,17 +170,18 @@ loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - # Shape space loss - loss_shape_1 = criterion(shape_1, label_shape_1) - # Total loss loss_yaw += alpha * loss_reg_yaw loss_pitch += alpha * loss_reg_pitch loss_roll += alpha * loss_reg_roll - loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_shape_1] + loss_seq = [loss_yaw, loss_pitch, loss_roll] + + # Shape space loss + for idx in xrange(len(shape)): + loss_seq.append(criterion(shape[idx], label_shape[:,idx])) + grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - model.zero_grad() torch.autograd.backward(loss_seq, grad_seq) optimizer.step() @@ -176,17 +189,17 @@ # %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' - %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) + print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f, Shape %.4f' + %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_seq[3].data[0])) if epoch == 0: torch.save(model.state_dict(), - 'output/snapshots/resnet50_iter_'+ str(i+1) + '.pkl') + 'output/snapshots/resnet50_shape_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs - 1: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/resnet50_epoch_'+ str(epoch+1) + '.pkl') + 'output/snapshots/resnet50_shape_epoch_'+ str(epoch+1) + '.pkl') # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/resnet50_epoch_' + str(epoch+1) + '.pkl') + torch.save(model.state_dict(), 'output/snapshots/resnet50_shape_epoch_' + str(epoch+1) + '.pkl') diff --git a/code/utils.py b/code/utils.py index 09a47a8..01710b2 100644 --- a/code/utils.py +++ b/code/utils.py @@ -7,6 +7,11 @@ import math from math import cos, sin +def softmax_temperature(tensor, temperature): + result = torch.exp(tensor / temperature) + result = torch.div(result, torch.sum(result, 1).unsqueeze(1).expand_as(result)) + return result + def get_pose_params_from_mat(mat_path): # This functions gets the pose parameters from the .mat # Annotations that come with the 300W_LP dataset. diff --git a/practice/aflw_example.py b/practice/aflw_example.py new file mode 100644 index 0000000..f81f333 --- /dev/null +++ b/practice/aflw_example.py @@ -0,0 +1,133 @@ +#!/usr/bin/env python + +## +# Massimiliano Patacchiola, Plymouth University 2016 +# website: http://mpatacchiola.github.io/ +# email: massimiliano.patacchiola@plymouth.ac.uk +# Python code for information retrieval from the Annotated Facial Landmarks in the Wild (AFLW) dataset. +# In this example the faces are isolated and saved in a specified output folder. +# Some information (roll, pitch, yaw) are returned, they can be used to filter the images. +# This code requires OpenCV and Numpy. You can easily bypass the OpenCV calls if you want to use +# a different library. In order to use the code you have to unzip the images and store them in +# the directory "flickr" mantaining the original folders name (0, 2, 3). +# +# The following are the database properties available (last updated version 2012-11-28): +# +# databases: db_id, path, description +# faceellipse: face_id, x, y, ra, rb, theta, annot_type_id, upsidedown +# faceimages: image_id, db_id, file_id, filepath, bw, widht, height +# facemetadata: face_id, sex, occluded, glasses, bw, annot_type_id +# facepose: face_id, roll, pitch, yaw, annot_type_id +# facerect: face_id, x, y, w, h, annot_type_id +# faces: face_id, file_id, db_id +# featurecoords: face_id, feature_id, x, y +# featurecoordtype: feature_id, descr, code, x, y, z + +import sqlite3 +import cv2 +import os.path +import numpy as np + +#Change this paths according to your directories +images_path = "./flickr/" +storing_path = "./output/" + +def main(): + + #Image counter + counter = 1 + + #Open the sqlite database + conn = sqlite3.connect('aflw.sqlite') + c = conn.cursor() + + #Creating the query string for retriving: roll, pitch, yaw and faces position + #Change it according to what you want to retrieve + select_string = "faceimages.filepath, faces.face_id, facepose.roll, facepose.pitch, facepose.yaw, facerect.x, facerect.y, facerect.w, facerect.h" + from_string = "faceimages, faces, facepose, facerect" + where_string = "faces.face_id = facepose.face_id and faces.file_id = faceimages.file_id and faces.face_id = facerect.face_id" + query_string = "SELECT " + select_string + " FROM " + from_string + " WHERE " + where_string + + #It iterates through the rows returned from the query + for row in c.execute(query_string): + + #Using our specific query_string, the "row" variable will contain: + # row[0] = image path + # row[1] = face id + # row[2] = roll + # row[3] = pitch + # row[4] = yaw + # row[5] = face coord x + # row[6] = face coord y + # row[7] = face width + # row[8] = face heigh + + #Creating the full path names for input and output + input_path = images_path + str(row[0]) + output_path = storing_path + str(row[0]) + + #If the file exist then open it + if(os.path.isfile(input_path) == True): + #image = cv2.imread(input_path, 0) #load in grayscale + image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #load the colour version + + #Image dimensions + image_h, image_w = image.shape + #Roll, pitch and yaw + roll = row[2] + pitch = row[3] + yaw = row[4] + #Face rectangle coords + face_x = row[5] + face_y = row[6] + face_w = row[7] + face_h = row[8] + + #Error correction + if(face_x < 0): face_x = 0 + if(face_y < 0): face_y = 0 + if(face_w > image_w): + face_w = image_w + face_h = image_w + if(face_h > image_h): + face_h = image_h + face_w = image_h + + #Crop the face from the image + image_cropped = np.copy(image[face_y:face_y+face_h, face_x:face_x+face_w]) + #Uncomment the lines below if you want to rescale the image to a particular size + #to_size = 64 + #image_rescaled = cv2.resize(image_cropped, (to_size,to_size), interpolation = cv2.INTER_AREA) + #Uncomment the line below if you want to use adaptive histogram normalisation + #clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(5,5)) + #image_normalised = clahe.apply(image_rescaled) + #Save the image + #change "image_cropped" with the last uncommented variable name above + cv2.imwrite(output_path, image_cropped) + + #Printing the information + print "Counter: " + str(counter) + print "iPath: " + input_path + print "oPath: " + output_path + print "Roll: " + str(roll) + print "Pitch: " + str(pitch) + print "Yaw: " + str(yaw) + print "x: " + str(face_x) + print "y: " + str(face_y) + print "w: " + str(face_w) + print "h: " + str(face_h) + print "" + + #Increasing the counter + counter = counter + 1 + + #if the file does not exits it return an exception + else: + raise ValueError('Error: I cannot find the file specified: ' + str(input_path)) + + #Once finished the iteration it closes the database + c.close() + +if __name__ == "__main__": + main() + -- Gitblit v1.8.0