From 2eb13d63b15a8ac908d6fa324c7f3d19141ca570 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期六, 12 八月 2017 08:57:15 +0800 Subject: [PATCH] Temperature softmax and 10 shape PCA regression. --- code/train_resnet_shape.py | 53 +++++++++++++++++++++++++++++++++-------------------- 1 files changed, 33 insertions(+), 20 deletions(-) diff --git a/code/train_resnet_shape.py b/code/train_resnet_shape.py index c874fae..f6baddf 100644 --- a/code/train_resnet_shape.py +++ b/code/train_resnet_shape.py @@ -66,7 +66,17 @@ b.append(model.fc_yaw) b.append(model.fc_pitch) b.append(model.fc_roll) + b.append(model.fc_shape_0) b.append(model.fc_shape_1) + b.append(model.fc_shape_2) + b.append(model.fc_shape_3) + b.append(model.fc_shape_4) + b.append(model.fc_shape_5) + b.append(model.fc_shape_6) + b.append(model.fc_shape_7) + b.append(model.fc_shape_8) + b.append(model.fc_shape_9) + for i in range(len(b)): for j in b[i].modules(): for k in j.parameters(): @@ -96,7 +106,7 @@ # ResNet101 with 3 outputs # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet_shape(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 60) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) @@ -114,8 +124,8 @@ num_workers=2) model.cuda(gpu) - criterion = nn.CrossEntropyLoss() - reg_criterion = nn.MSELoss() + criterion = nn.CrossEntropyLoss().cuda(gpu) + reg_criterion = nn.MSELoss().cuda(gpu) # Regression loss coefficient alpha = 0.1 lsm = nn.Softmax() @@ -124,21 +134,23 @@ idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, - {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], + {'params': get_non_ignored_params(model), 'lr': args.lr}], lr = args.lr) print 'Ready to train network.' for epoch in range(num_epochs): for i, (images, labels, name) in enumerate(train_loader): - images = Variable(images).cuda(gpu) - label_yaw = Variable(labels[:,0]).cuda(gpu) - label_pitch = Variable(labels[:,1]).cuda(gpu) - label_roll = Variable(labels[:,2]).cuda(gpu) - label_shape_1 = Variable(labels[:,3]).cuda(gpu) + images = Variable(images.cuda(gpu)) + label_yaw = Variable(labels[:,0].cuda(gpu)) + label_pitch = Variable(labels[:,1].cuda(gpu)) + label_roll = Variable(labels[:,2].cuda(gpu)) + label_shape = Variable(labels[:,3:].cuda(gpu)) optimizer.zero_grad() - yaw, pitch, roll, shape_1 = model(images) + model.zero_grad() + + yaw, pitch, roll, shape = model(images) # Cross entropy loss loss_yaw = criterion(yaw, label_yaw) @@ -158,17 +170,18 @@ loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) - # Shape space loss - loss_shape_1 = criterion(shape_1, label_shape_1) - # Total loss loss_yaw += alpha * loss_reg_yaw loss_pitch += alpha * loss_reg_pitch loss_roll += alpha * loss_reg_roll - loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_shape_1] + loss_seq = [loss_yaw, loss_pitch, loss_roll] + + # Shape space loss + for idx in xrange(len(shape)): + loss_seq.append(criterion(shape[idx], label_shape[:,idx])) + grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] - model.zero_grad() torch.autograd.backward(loss_seq, grad_seq) optimizer.step() @@ -176,17 +189,17 @@ # %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) if (i+1) % 100 == 0: - print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' - %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) + print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f, Shape %.4f' + %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_seq[3].data[0])) if epoch == 0: torch.save(model.state_dict(), - 'output/snapshots/resnet50_iter_'+ str(i+1) + '.pkl') + 'output/snapshots/resnet50_shape_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs - 1: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/resnet50_epoch_'+ str(epoch+1) + '.pkl') + 'output/snapshots/resnet50_shape_epoch_'+ str(epoch+1) + '.pkl') # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/resnet50_epoch_' + str(epoch+1) + '.pkl') + torch.save(model.state_dict(), 'output/snapshots/resnet50_shape_epoch_' + str(epoch+1) + '.pkl') -- Gitblit v1.8.0