From 2f6778c2db9ce1a887f04fdc85ad0d5db4ba84b8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nruiz9@gatech.edu> Date: 星期一, 30 十月 2017 06:15:30 +0800 Subject: [PATCH] Cleaned up a bit --- /dev/null | 40 ----- code/datasets.py | 56 ++++---- code/hopenet.py | 24 +-- code/train_alexnet.py | 70 +++------ code/train_resnet50_regression.py | 55 ++----- code/train_preangles.py | 94 +++--------- code/test_preangles.py | 43 ++--- 7 files changed, 116 insertions(+), 266 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index b2b9ca3..a28c584 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -1,18 +1,24 @@ -import numpy as np -import torch -import cv2 -from torch.utils.data.dataset import Dataset import os +import numpy as np +import cv2 + +import torch +from torch.utils.data.dataset import Dataset +from torchvision import transforms + from PIL import Image, ImageFilter import utils -from torchvision import transforms -def stack_grayscale_tensor(tensor): - tensor = torch.cat([tensor, tensor, tensor], 0) - return tensor +def get_list_from_filenames(file_path): + # input: relative path to .txt file with file names + # output: list of relative path names + with open(file_path) as f: + lines = f.read().splitlines() + return lines class Pose_300W_LP(Dataset): + # Head pose from 300W-LP dataset def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -32,14 +38,13 @@ mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') - # Crop the face + # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) - # k = 0.35 was being used beforehand # k = 0.2 to 0.40 k = np.random.random_sample() * 0.2 + 0.2 x_min -= 0.6 * k * abs(x_max - x_min) @@ -74,6 +79,7 @@ # Get shape shape = np.load(shape_path) + # Get target tensors labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) cont_labels = torch.FloatTensor([yaw, pitch, roll]) @@ -87,6 +93,7 @@ return self.length class Pose_300W_LP_random_ds(Dataset): + # 300W-LP dataset with random downsampling def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -106,7 +113,7 @@ mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') - # Crop the face + # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) @@ -122,9 +129,7 @@ img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians - pose = utils.get_ypr_from_mat(mat_path) - # And convert to degrees. - pitch = pose[0] * 180 / np.pi + pose = utils.get_ypr_fro # Head pose from AFLW2000 datasetp.pi yaw = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi @@ -152,6 +157,7 @@ # Get shape shape = np.load(shape_path) + # Get target tensors labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) cont_labels = torch.FloatTensor([yaw, pitch, roll]) @@ -183,7 +189,7 @@ img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) - # Crop the face + # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) @@ -219,6 +225,7 @@ return self.length class AFLW2000_ds(Dataset): + # AFLW2000 dataset with fixed downsampling def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -237,7 +244,7 @@ img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) - # Crop the face + # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) @@ -251,7 +258,7 @@ y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) - ds = 3 + ds = 3 # downsampling factor original_size = img.size img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) @@ -277,6 +284,7 @@ return self.length class AFLW_aug(Dataset): + # AFLW dataset with flipping def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -303,7 +311,7 @@ yaw = pose[0] * 180 / np.pi pitch = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi - # Something weird with the roll in AFLW + # Fix the roll in AFLW roll *= -1 # Augment @@ -356,7 +364,7 @@ yaw = pose[0] * 180 / np.pi pitch = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi - # Something weird with the roll in AFLW + # Fix the roll in AFLW roll *= -1 # Bin values bins = np.array(range(-99, 102, 3)) @@ -400,7 +408,7 @@ line = annot.readline().split(' ') yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])] - # Crop the face + # Crop the face loosely k = 0.32 x1 = float(line[4]) y1 = float(line[5]) @@ -505,11 +513,3 @@ def __len__(self): # 15,667 return self.length - - -def get_list_from_filenames(file_path): - # input: relative path to .txt file with file names - # output: list of relative path names - with open(file_path) as f: - lines = f.read().splitlines() - return lines diff --git a/code/hopenet.py b/code/hopenet.py index 129ff63..0a98a66 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -5,8 +5,9 @@ import torch.nn.functional as F class Hopenet(nn.Module): - # This is just Hopenet with 3 output layers for yaw, pitch and roll. - def __init__(self, block, layers, num_bins, iter_ref): + # Hopenet with 3 output layers for yaw, pitch and roll + # Predicts Euler angles by binning and regression with the expected value + def __init__(self, block, layers, num_bins): self.inplanes = 64 super(Hopenet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, @@ -23,12 +24,11 @@ self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) - self.softmax = nn.Softmax() self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) + # Used to get the expected value of angle from bins + self.softmax = nn.Softmax() self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() - - self.iter_ref = iter_ref for m in self.modules(): if isinstance(m, nn.Conv2d): @@ -81,18 +81,12 @@ yaw = yaw.view(yaw.size(0), 1) pitch = pitch.view(pitch.size(0), 1) roll = roll.view(roll.size(0), 1) - angles = [] preangles = torch.cat([yaw, pitch, roll], 1) - angles.append(preangles) - # angles predicts the residual - for idx in xrange(self.iter_ref): - angles.append(self.fc_finetune(torch.cat((angles[idx], x), 1))) - - return pre_yaw, pre_pitch, pre_roll, angles + return pre_yaw, pre_pitch, pre_roll, preangles class ResNet(nn.Module): - + # ResNet for regression of 3 Euler angles. def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() @@ -147,11 +141,11 @@ x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc_angles(x) - return x class AlexNet(nn.Module): - + # AlexNet laid out as a Hopenet - classify Euler angles in bins and + # regress the expected value. def __init__(self, num_bins): super(AlexNet, self).__init__() self.features = nn.Sequential( diff --git a/code/test_AFW.py b/code/test_AFW.py deleted file mode 100644 index ab0571f..0000000 --- a/code/test_AFW.py +++ /dev/null @@ -1,157 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -from torch.autograd import Variable -from torch.utils.data import DataLoader -from torchvision import transforms -import torch.backends.cudnn as cudnn -import torchvision -import torch.nn.functional as F - -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils - -def parse_args(): - """Parse input arguments.""" - parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') - parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', - default=0, type=int) - parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', - default='', type=str) - parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', - default='', type=str) - parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', - default='', type=str) - parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', - default=1, type=int) - parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', - default=False, type=bool) - parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int) - parser.add_argument('--margin', dest='margin', help='Accuracy margin.', default=22.5, - type=float) - - args = parser.parse_args() - - return args - -if __name__ == '__main__': - args = parse_args() - - cudnn.enabled = True - gpu = args.gpu_id - snapshot_path = args.snapshot - - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - - print 'Loading snapshot.' - # Load snapshot - saved_state_dict = torch.load(snapshot_path) - model.load_state_dict(saved_state_dict) - - print 'Loading data.' - - transformations = transforms.Compose([transforms.Scale(224), - transforms.CenterCrop(224), transforms.ToTensor()]) - - pose_dataset = datasets.AFW(args.data_dir, args.filename_list, - transformations) - test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=args.batch_size, - num_workers=2) - - model.cuda(gpu) - - print 'Ready to test network.' - - # Test the Model - model.eval() # Change model to 'eval' mode (BN uses moving mean/var). - total = 0 - n_margins = 20 - yaw_correct = np.zeros(n_margins) - pitch_correct = np.zeros(n_margins) - roll_correct = np.zeros(n_margins) - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - - yaw_error = .0 - pitch_error = .0 - roll_error = .0 - - l1loss = torch.nn.L1Loss(size_average=False) - - yaw_correct = .0 - yaw_margin = args.margin - - for i, (images, labels, name) in enumerate(test_loader): - images = Variable(images).cuda(gpu) - total += labels.size(0) - label_yaw = labels[:,0].float() * 3 - 99 - label_pitch = labels[:,1].float() * 3 - 99 - label_roll = labels[:,2].float() * 3 - 99 - - pre_yaw, pre_pitch, pre_roll, angles = model(images) - yaw = angles[0][:,0].cpu().data - pitch = angles[0][:,1].cpu().data - roll = angles[0][:,2].cpu().data - - for idx in xrange(1,args.iter_ref+1): - yaw += angles[idx][:,0].cpu().data - pitch += angles[idx][:,1].cpu().data - roll += angles[idx][:,2].cpu().data - - yaw = yaw * 3 - 99 - pitch = pitch * 3 - 99 - roll = roll * 3 - 99 - # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw - label_yaw)) - pitch_error += torch.sum(torch.abs(pitch - label_pitch)) - roll_error += torch.sum(torch.abs(roll - label_roll)) - - # Yaw accuracy - yaw_tensor_error = torch.abs(yaw - label_yaw).numpy() - - yaw_correct += np.where(yaw_tensor_error <= yaw_margin)[0].shape[0] - - if yaw_tensor_error[0] > yaw_margin: - print name[0] + ' ' + str(yaw[0]) + ' ' + str(label_yaw[0]) + ' ' + str(yaw_tensor_error[0]) - - # Binned Accuracy - # for er in xrange(n_margins): - # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) - # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) - # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) - - # print label_yaw[0], yaw_bpred[0,0] - - # Save images with pose cube. - # TODO: fix for larger batch size - if args.save_viz: - name = name[0] - cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) - #print os.path.join('output/images', name + '.jpg') - #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 - #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 - utils.plot_pose_cube(cv2_img, yaw[0], pitch[0], roll[0]) - cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) - - print('Test error in degrees of the model on the ' + str(total) + - ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, - pitch_error / total, roll_error / total)) - print ('Yaw accuracy (<= ' + str(yaw_margin) + ' degrees) is %.4f' % (yaw_correct / total)) - - # Binned accuracy - # for idx in xrange(len(yaw_correct)): - # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total diff --git a/code/test_preangles.py b/code/test_preangles.py index cfee8d1..3d70bb0 100644 --- a/code/test_preangles.py +++ b/code/test_preangles.py @@ -1,4 +1,9 @@ +import sys, os, argparse + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,15 +13,7 @@ import torchvision import torch.nn.functional as F -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils +import datasets, hopenet, utils def parse_args(): """Parse input arguments.""" @@ -46,12 +43,8 @@ gpu = args.gpu_id snapshot_path = args.snapshot - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + # ResNet50 structure + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) print 'Loading snapshot.' # Load snapshot @@ -64,18 +57,18 @@ transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - if args.dataset == 'AFLW2000': - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, - transformations) - elif args.dataset == 'AFLW2000_ds': - pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, - transformations) + if args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP_random_ds': + pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) elif args.dataset == 'BIWI': pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW': pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'Pose_300W_LP': - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW_aug': + pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFW': pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) else: @@ -93,9 +86,6 @@ model.eval() # Change model to 'eval' mode (BN uses moving mean/var). total = 0 - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - yaw_error = .0 pitch_error = .0 roll_error = .0 @@ -105,6 +95,7 @@ for i, (images, labels, cont_labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) total += cont_labels.size(0) + label_yaw = cont_labels[:,0].float() label_pitch = cont_labels[:,1].float() label_roll = cont_labels[:,2].float() diff --git a/code/train_alexnet.py b/code/train_alexnet.py index 5f60211..9254ee7 100644 --- a/code/train_alexnet.py +++ b/code/train_alexnet.py @@ -1,4 +1,9 @@ +import sys, os, argparse, time + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,17 +13,8 @@ import torch.backends.cudnn as cudnn import torch.nn.functional as F -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet +import datasets, hopenet import torch.utils.model_zoo as model_zoo - -import time model_urls = { 'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth', @@ -43,16 +39,12 @@ parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', default=0.001, type=float) parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) - args = parser.parse_args() return args def get_ignored_params(model): # Generator function that yields ignored params. - b = [] - b.append(model.features[0]) - b.append(model.features[1]) - b.append(model.features[2]) + b = [model.features[0], model.features[1], model.features[2]] for i in range(len(b)): for module_name, module in b[i].named_modules(): if 'bn' in module_name: @@ -75,10 +67,7 @@ yield param def get_fc_params(model): - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) + b = [model.fc_yaw, model.fc_pitch, model.fc_roll] for i in range(len(b)): for module_name, module in b[i].named_modules(): for name, param in module.named_parameters(): @@ -87,11 +76,8 @@ def load_filtered_state_dict(model, snapshot): # By user apaszke from discuss.pytorch.org model_dict = model.state_dict() - # 1. filter out unnecessary keys snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict model_dict.update(snapshot) - # 3. load the new state dict model.load_state_dict(model_dict) if __name__ == '__main__': @@ -116,6 +102,8 @@ if args.dataset == 'Pose_300W_LP': pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP_random_ds': + pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW2000': pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) elif args.dataset == 'BIWI': @@ -141,48 +129,38 @@ # Regression loss coefficient alpha = args.alpha - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, {'params': get_non_ignored_params(model), 'lr': args.lr}, {'params': get_fc_params(model), 'lr': args.lr * 5}], lr = args.lr) print 'Ready to train network.' - print 'First phase of training.' for epoch in range(num_epochs): - # start = time.time() for i, (images, labels, cont_labels, name) in enumerate(train_loader): - # print i - # print 'start: ', time.time() - start images = Variable(images).cuda(gpu) + + # Binned labels label_yaw = Variable(labels[:,0]).cuda(gpu) label_pitch = Variable(labels[:,1]).cuda(gpu) label_roll = Variable(labels[:,2]).cuda(gpu) - label_angles = Variable(cont_labels[:,:3]).cuda(gpu) + # Continuous labels label_yaw_cont = Variable(cont_labels[:,0]).cuda(gpu) label_pitch_cont = Variable(cont_labels[:,1]).cuda(gpu) label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu) - optimizer.zero_grad() - model.zero_grad() + # Forward pass + yaw, pitch, roll, angles = model(images) - pre_yaw, pre_pitch, pre_roll = model(images) # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) + loss_yaw = criterion(yaw, label_yaw) + loss_pitch = criterion(pitch, label_pitch) + loss_roll = criterion(roll, label_roll) # MSE loss - yaw_predicted = softmax(pre_yaw) - pitch_predicted = softmax(pre_pitch) - roll_predicted = softmax(pre_roll) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99 - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99 - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99 + yaw_predicted = angles[:,0] + pitch_predicted = angles[:,1] + roll_predicted = angles[:,2] loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) @@ -195,17 +173,13 @@ loss_seq = [loss_yaw, loss_pitch, loss_roll] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + optimizer.zero_grad() torch.autograd.backward(loss_seq, grad_seq) optimizer.step() - - # print 'end: ', time.time() - start if (i+1) % 100 == 0: print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: diff --git a/code/train_preangles.py b/code/train_preangles.py index ffceee2..1fe626c 100644 --- a/code/train_preangles.py +++ b/code/train_preangles.py @@ -1,4 +1,9 @@ +import sys, os, argparse, time + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,25 +13,8 @@ import torch.backends.cudnn as cudnn import torch.nn.functional as F -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet +import datasets, hopenet import torch.utils.model_zoo as model_zoo - -import time - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} def parse_args(): """Parse input arguments.""" @@ -53,10 +41,7 @@ def get_ignored_params(model): # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) - b.append(model.fc_finetune) + b = [model.conv1, model.bn1, model.fc_finetune] for i in range(len(b)): for module_name, module in b[i].named_modules(): if 'bn' in module_name: @@ -66,11 +51,7 @@ def get_non_ignored_params(model): # Generator function that yields params that will be optimized. - b = [] - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) + b = [model.layer1, model.layer2, model.layer3, model.layer4] for i in range(len(b)): for module_name, module in b[i].named_modules(): if 'bn' in module_name: @@ -79,10 +60,8 @@ yield param def get_fc_params(model): - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) + # Generator function that yields fc layer params. + b = [model.fc_yaw, model.fc_pitch, model.fc_roll] for i in range(len(b)): for module_name, module in b[i].named_modules(): for name, param in module.named_parameters(): @@ -91,11 +70,8 @@ def load_filtered_state_dict(model, snapshot): # By user apaszke from discuss.pytorch.org model_dict = model.state_dict() - # 1. filter out unnecessary keys snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict model_dict.update(snapshot) - # 3. load the new state dict model.load_state_dict(model_dict) if __name__ == '__main__': @@ -109,13 +85,9 @@ if not os.path.exists('output/snapshots'): os.makedirs('output/snapshots') - # ResNet101 with 3 outputs - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) + # ResNet50 structure + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')) print 'Loading data.' @@ -140,20 +112,17 @@ else: print 'Error: not a valid dataset name' sys.exit() + train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, shuffle=True, num_workers=2) model.cuda(gpu) - softmax = nn.Softmax().cuda(gpu) criterion = nn.CrossEntropyLoss().cuda(gpu) reg_criterion = nn.MSELoss().cuda(gpu) # Regression loss coefficient alpha = args.alpha - - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, {'params': get_non_ignored_params(model), 'lr': args.lr}, @@ -161,39 +130,32 @@ lr = args.lr) print 'Ready to train network.' - print 'First phase of training.' for epoch in range(num_epochs): - # start = time.time() for i, (images, labels, cont_labels, name) in enumerate(train_loader): - # print i - # print 'start: ', time.time() - start images = Variable(images).cuda(gpu) + + # Binned labels label_yaw = Variable(labels[:,0]).cuda(gpu) label_pitch = Variable(labels[:,1]).cuda(gpu) label_roll = Variable(labels[:,2]).cuda(gpu) - label_angles = Variable(cont_labels[:,:3]).cuda(gpu) + # Continuous labels label_yaw_cont = Variable(cont_labels[:,0]).cuda(gpu) label_pitch_cont = Variable(cont_labels[:,1]).cuda(gpu) label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu) - optimizer.zero_grad() - model.zero_grad() + # Forward pass + yaw, pitch, roll, angles = model(images) - pre_yaw, pre_pitch, pre_roll, angles = model(images) # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) + loss_yaw = criterion(yaw, label_yaw) + loss_pitch = criterion(pitch, label_pitch) + loss_roll = criterion(roll, label_roll) # MSE loss - yaw_predicted = softmax(pre_yaw) - pitch_predicted = softmax(pre_pitch) - roll_predicted = softmax(pre_roll) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99 - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99 - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99 + yaw_predicted = angles[:,0] + pitch_predicted = angles[:,1] + roll_predicted = angles[:,2] loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) @@ -206,17 +168,13 @@ loss_seq = [loss_yaw, loss_pitch, loss_roll] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + optimizer.zero_grad() torch.autograd.backward(loss_seq, grad_seq) optimizer.step() - - # print 'end: ', time.time() - start if (i+1) % 100 == 0: print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: diff --git a/code/train_resnet50_regression.py b/code/train_resnet50_regression.py index a67a6f2..04d27c7 100644 --- a/code/train_resnet50_regression.py +++ b/code/train_resnet50_regression.py @@ -1,4 +1,9 @@ +import sys, os, argparse, time + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,25 +13,8 @@ import torch.backends.cudnn as cudnn import torch.nn.functional as F -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet +import datasets, hopenet import torch.utils.model_zoo as model_zoo - -import time - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} def parse_args(): """Parse input arguments.""" @@ -51,9 +39,7 @@ def get_ignored_params(model): # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) + b = [model.conv1, model.bn1] for i in range(len(b)): for module_name, module in b[i].named_modules(): if 'bn' in module_name: @@ -63,11 +49,7 @@ def get_non_ignored_params(model): # Generator function that yields params that will be optimized. - b = [] - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) + b = [model.layer1, model.layer2, model.layer3, model.layer4] for i in range(len(b)): for module_name, module in b[i].named_modules(): if 'bn' in module_name: @@ -76,8 +58,8 @@ yield param def get_fc_params(model): - b = [] - b.append(model.fc_angles) + # Generator function that yields fc layer params. + b = [model.fc_angles] for i in range(len(b)): for module_name, module in b[i].named_modules(): for name, param in module.named_parameters(): @@ -86,11 +68,8 @@ def load_filtered_state_dict(model, snapshot): # By user apaszke from discuss.pytorch.org model_dict = model.state_dict() - # 1. filter out unnecessary keys snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict model_dict.update(snapshot) - # 3. load the new state dict model.load_state_dict(model_dict) if __name__ == '__main__': @@ -106,8 +85,7 @@ # ResNet50 model = hopenet.ResNet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 3) - - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) + load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')) print 'Loading data.' @@ -117,6 +95,8 @@ if args.dataset == 'Pose_300W_LP': pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP_random_ds': + pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW2000': pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) elif args.dataset == 'BIWI': @@ -150,23 +130,16 @@ images = Variable(images).cuda(gpu) label_angles = Variable(cont_labels[:,:3]).cuda(gpu) - - optimizer.zero_grad() - model.zero_grad() - angles = model(images) loss = criterion(angles, label_angles) - + optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f' %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: diff --git a/code/vdsr.py b/code/vdsr.py deleted file mode 100755 index 1c4f163..0000000 --- a/code/vdsr.py +++ /dev/null @@ -1,40 +0,0 @@ -import torch -import torch.nn as nn -from math import sqrt - -class Conv_ReLU_Block(nn.Module): - def __init__(self): - super(Conv_ReLU_Block, self).__init__() - self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False) - self.relu = nn.ReLU(inplace=True) - - def forward(self, x): - return self.relu(self.conv(x)) - -class Net(nn.Module): - def __init__(self): - super(Net, self).__init__() - self.residual_layer = self.make_layer(Conv_ReLU_Block, 18) - self.input = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False) - self.output = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=3, stride=1, padding=1, bias=False) - self.relu = nn.ReLU(inplace=True) - - for m in self.modules(): - if isinstance(m, nn.Conv2d): - n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels - m.weight.data.normal_(0, sqrt(2. / n)) - - def make_layer(self, block, num_of_layer): - layers = [] - for _ in range(num_of_layer): - layers.append(block()) - return nn.Sequential(*layers) - - def forward(self, x): - residual = x - out = self.relu(self.input(x)) - out = self.residual_layer(out) - out = self.output(out) - out = torch.add(out,residual) - return out - \ No newline at end of file -- Gitblit v1.8.0