From 2f6778c2db9ce1a887f04fdc85ad0d5db4ba84b8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nruiz9@gatech.edu> Date: 星期一, 30 十月 2017 06:15:30 +0800 Subject: [PATCH] Cleaned up a bit --- code/datasets.py | 56 ++++++++++++++++++++++++++++---------------------------- 1 files changed, 28 insertions(+), 28 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index b2b9ca3..a28c584 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -1,18 +1,24 @@ -import numpy as np -import torch -import cv2 -from torch.utils.data.dataset import Dataset import os +import numpy as np +import cv2 + +import torch +from torch.utils.data.dataset import Dataset +from torchvision import transforms + from PIL import Image, ImageFilter import utils -from torchvision import transforms -def stack_grayscale_tensor(tensor): - tensor = torch.cat([tensor, tensor, tensor], 0) - return tensor +def get_list_from_filenames(file_path): + # input: relative path to .txt file with file names + # output: list of relative path names + with open(file_path) as f: + lines = f.read().splitlines() + return lines class Pose_300W_LP(Dataset): + # Head pose from 300W-LP dataset def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -32,14 +38,13 @@ mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') - # Crop the face + # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) - # k = 0.35 was being used beforehand # k = 0.2 to 0.40 k = np.random.random_sample() * 0.2 + 0.2 x_min -= 0.6 * k * abs(x_max - x_min) @@ -74,6 +79,7 @@ # Get shape shape = np.load(shape_path) + # Get target tensors labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) cont_labels = torch.FloatTensor([yaw, pitch, roll]) @@ -87,6 +93,7 @@ return self.length class Pose_300W_LP_random_ds(Dataset): + # 300W-LP dataset with random downsampling def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -106,7 +113,7 @@ mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy') - # Crop the face + # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) @@ -122,9 +129,7 @@ img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians - pose = utils.get_ypr_from_mat(mat_path) - # And convert to degrees. - pitch = pose[0] * 180 / np.pi + pose = utils.get_ypr_fro # Head pose from AFLW2000 datasetp.pi yaw = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi @@ -152,6 +157,7 @@ # Get shape shape = np.load(shape_path) + # Get target tensors labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0)) cont_labels = torch.FloatTensor([yaw, pitch, roll]) @@ -183,7 +189,7 @@ img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) - # Crop the face + # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) @@ -219,6 +225,7 @@ return self.length class AFLW2000_ds(Dataset): + # AFLW2000 dataset with fixed downsampling def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -237,7 +244,7 @@ img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) - # Crop the face + # Crop the face loosely pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) @@ -251,7 +258,7 @@ y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) - ds = 3 + ds = 3 # downsampling factor original_size = img.size img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=Image.NEAREST) img = img.resize((original_size[0], original_size[1]), resample=Image.NEAREST) @@ -277,6 +284,7 @@ return self.length class AFLW_aug(Dataset): + # AFLW dataset with flipping def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): self.data_dir = data_dir self.transform = transform @@ -303,7 +311,7 @@ yaw = pose[0] * 180 / np.pi pitch = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi - # Something weird with the roll in AFLW + # Fix the roll in AFLW roll *= -1 # Augment @@ -356,7 +364,7 @@ yaw = pose[0] * 180 / np.pi pitch = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi - # Something weird with the roll in AFLW + # Fix the roll in AFLW roll *= -1 # Bin values bins = np.array(range(-99, 102, 3)) @@ -400,7 +408,7 @@ line = annot.readline().split(' ') yaw, pitch, roll = [float(line[1]), float(line[2]), float(line[3])] - # Crop the face + # Crop the face loosely k = 0.32 x1 = float(line[4]) y1 = float(line[5]) @@ -505,11 +513,3 @@ def __len__(self): # 15,667 return self.length - - -def get_list_from_filenames(file_path): - # input: relative path to .txt file with file names - # output: list of relative path names - with open(file_path) as f: - lines = f.read().splitlines() - return lines -- Gitblit v1.8.0