From 2f6778c2db9ce1a887f04fdc85ad0d5db4ba84b8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nruiz9@gatech.edu> Date: 星期一, 30 十月 2017 06:15:30 +0800 Subject: [PATCH] Cleaned up a bit --- code/hopenet.py | 24 +++++++++--------------- 1 files changed, 9 insertions(+), 15 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index 129ff63..0a98a66 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -5,8 +5,9 @@ import torch.nn.functional as F class Hopenet(nn.Module): - # This is just Hopenet with 3 output layers for yaw, pitch and roll. - def __init__(self, block, layers, num_bins, iter_ref): + # Hopenet with 3 output layers for yaw, pitch and roll + # Predicts Euler angles by binning and regression with the expected value + def __init__(self, block, layers, num_bins): self.inplanes = 64 super(Hopenet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, @@ -23,12 +24,11 @@ self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) - self.softmax = nn.Softmax() self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) + # Used to get the expected value of angle from bins + self.softmax = nn.Softmax() self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() - - self.iter_ref = iter_ref for m in self.modules(): if isinstance(m, nn.Conv2d): @@ -81,18 +81,12 @@ yaw = yaw.view(yaw.size(0), 1) pitch = pitch.view(pitch.size(0), 1) roll = roll.view(roll.size(0), 1) - angles = [] preangles = torch.cat([yaw, pitch, roll], 1) - angles.append(preangles) - # angles predicts the residual - for idx in xrange(self.iter_ref): - angles.append(self.fc_finetune(torch.cat((angles[idx], x), 1))) - - return pre_yaw, pre_pitch, pre_roll, angles + return pre_yaw, pre_pitch, pre_roll, preangles class ResNet(nn.Module): - + # ResNet for regression of 3 Euler angles. def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() @@ -147,11 +141,11 @@ x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc_angles(x) - return x class AlexNet(nn.Module): - + # AlexNet laid out as a Hopenet - classify Euler angles in bins and + # regress the expected value. def __init__(self, num_bins): super(AlexNet, self).__init__() self.features = nn.Sequential( -- Gitblit v1.8.0