From 2f6778c2db9ce1a887f04fdc85ad0d5db4ba84b8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nruiz9@gatech.edu> Date: 星期一, 30 十月 2017 06:15:30 +0800 Subject: [PATCH] Cleaned up a bit --- code/test_preangles.py | 43 +++++++++++++++++-------------------------- 1 files changed, 17 insertions(+), 26 deletions(-) diff --git a/code/test_preangles.py b/code/test_preangles.py index cfee8d1..3d70bb0 100644 --- a/code/test_preangles.py +++ b/code/test_preangles.py @@ -1,4 +1,9 @@ +import sys, os, argparse + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,15 +13,7 @@ import torchvision import torch.nn.functional as F -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet -import utils +import datasets, hopenet, utils def parse_args(): """Parse input arguments.""" @@ -46,12 +43,8 @@ gpu = args.gpu_id snapshot_path = args.snapshot - # ResNet101 with 3 outputs. - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) - # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) - # ResNet18 - # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + # ResNet50 structure + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) print 'Loading snapshot.' # Load snapshot @@ -64,18 +57,18 @@ transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - if args.dataset == 'AFLW2000': - pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, - transformations) - elif args.dataset == 'AFLW2000_ds': - pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, - transformations) + if args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP_random_ds': + pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) elif args.dataset == 'BIWI': pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW': pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) - elif args.dataset == 'Pose_300W_LP': - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW_aug': + pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFW': pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) else: @@ -93,9 +86,6 @@ model.eval() # Change model to 'eval' mode (BN uses moving mean/var). total = 0 - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) - yaw_error = .0 pitch_error = .0 roll_error = .0 @@ -105,6 +95,7 @@ for i, (images, labels, cont_labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) total += cont_labels.size(0) + label_yaw = cont_labels[:,0].float() label_pitch = cont_labels[:,1].float() label_roll = cont_labels[:,2].float() -- Gitblit v1.8.0