From 2f6778c2db9ce1a887f04fdc85ad0d5db4ba84b8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nruiz9@gatech.edu> Date: 星期一, 30 十月 2017 06:15:30 +0800 Subject: [PATCH] Cleaned up a bit --- code/train_alexnet.py | 70 +++++++++++------------------------ 1 files changed, 22 insertions(+), 48 deletions(-) diff --git a/code/train_alexnet.py b/code/train_alexnet.py index 5f60211..9254ee7 100644 --- a/code/train_alexnet.py +++ b/code/train_alexnet.py @@ -1,4 +1,9 @@ +import sys, os, argparse, time + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,17 +13,8 @@ import torch.backends.cudnn as cudnn import torch.nn.functional as F -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet +import datasets, hopenet import torch.utils.model_zoo as model_zoo - -import time model_urls = { 'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth', @@ -43,16 +39,12 @@ parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', default=0.001, type=float) parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) - args = parser.parse_args() return args def get_ignored_params(model): # Generator function that yields ignored params. - b = [] - b.append(model.features[0]) - b.append(model.features[1]) - b.append(model.features[2]) + b = [model.features[0], model.features[1], model.features[2]] for i in range(len(b)): for module_name, module in b[i].named_modules(): if 'bn' in module_name: @@ -75,10 +67,7 @@ yield param def get_fc_params(model): - b = [] - b.append(model.fc_yaw) - b.append(model.fc_pitch) - b.append(model.fc_roll) + b = [model.fc_yaw, model.fc_pitch, model.fc_roll] for i in range(len(b)): for module_name, module in b[i].named_modules(): for name, param in module.named_parameters(): @@ -87,11 +76,8 @@ def load_filtered_state_dict(model, snapshot): # By user apaszke from discuss.pytorch.org model_dict = model.state_dict() - # 1. filter out unnecessary keys snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict model_dict.update(snapshot) - # 3. load the new state dict model.load_state_dict(model_dict) if __name__ == '__main__': @@ -116,6 +102,8 @@ if args.dataset == 'Pose_300W_LP': pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP_random_ds': + pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW2000': pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) elif args.dataset == 'BIWI': @@ -141,48 +129,38 @@ # Regression loss coefficient alpha = args.alpha - idx_tensor = [idx for idx in xrange(66)] - idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, {'params': get_non_ignored_params(model), 'lr': args.lr}, {'params': get_fc_params(model), 'lr': args.lr * 5}], lr = args.lr) print 'Ready to train network.' - print 'First phase of training.' for epoch in range(num_epochs): - # start = time.time() for i, (images, labels, cont_labels, name) in enumerate(train_loader): - # print i - # print 'start: ', time.time() - start images = Variable(images).cuda(gpu) + + # Binned labels label_yaw = Variable(labels[:,0]).cuda(gpu) label_pitch = Variable(labels[:,1]).cuda(gpu) label_roll = Variable(labels[:,2]).cuda(gpu) - label_angles = Variable(cont_labels[:,:3]).cuda(gpu) + # Continuous labels label_yaw_cont = Variable(cont_labels[:,0]).cuda(gpu) label_pitch_cont = Variable(cont_labels[:,1]).cuda(gpu) label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu) - optimizer.zero_grad() - model.zero_grad() + # Forward pass + yaw, pitch, roll, angles = model(images) - pre_yaw, pre_pitch, pre_roll = model(images) # Cross entropy loss - loss_yaw = criterion(pre_yaw, label_yaw) - loss_pitch = criterion(pre_pitch, label_pitch) - loss_roll = criterion(pre_roll, label_roll) + loss_yaw = criterion(yaw, label_yaw) + loss_pitch = criterion(pitch, label_pitch) + loss_roll = criterion(roll, label_roll) # MSE loss - yaw_predicted = softmax(pre_yaw) - pitch_predicted = softmax(pre_pitch) - roll_predicted = softmax(pre_roll) - - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99 - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99 - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99 + yaw_predicted = angles[:,0] + pitch_predicted = angles[:,1] + roll_predicted = angles[:,2] loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) @@ -195,17 +173,13 @@ loss_seq = [loss_yaw, loss_pitch, loss_roll] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + optimizer.zero_grad() torch.autograd.backward(loss_seq, grad_seq) optimizer.step() - - # print 'end: ', time.time() - start if (i+1) % 100 == 0: print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: -- Gitblit v1.8.0