From 2f6778c2db9ce1a887f04fdc85ad0d5db4ba84b8 Mon Sep 17 00:00:00 2001 From: natanielruiz <nruiz9@gatech.edu> Date: 星期一, 30 十月 2017 06:15:30 +0800 Subject: [PATCH] Cleaned up a bit --- code/train_resnet50_regression.py | 55 ++++++++++++++----------------------------------------- 1 files changed, 14 insertions(+), 41 deletions(-) diff --git a/code/train_resnet50_regression.py b/code/train_resnet50_regression.py index a67a6f2..04d27c7 100644 --- a/code/train_resnet50_regression.py +++ b/code/train_resnet50_regression.py @@ -1,4 +1,9 @@ +import sys, os, argparse, time + import numpy as np +import cv2 +import matplotlib.pyplot as plt + import torch import torch.nn as nn from torch.autograd import Variable @@ -8,25 +13,8 @@ import torch.backends.cudnn as cudnn import torch.nn.functional as F -import cv2 -import matplotlib.pyplot as plt -import sys -import os -import argparse - -import datasets -import hopenet +import datasets, hopenet import torch.utils.model_zoo as model_zoo - -import time - -model_urls = { - 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', - 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} def parse_args(): """Parse input arguments.""" @@ -51,9 +39,7 @@ def get_ignored_params(model): # Generator function that yields ignored params. - b = [] - b.append(model.conv1) - b.append(model.bn1) + b = [model.conv1, model.bn1] for i in range(len(b)): for module_name, module in b[i].named_modules(): if 'bn' in module_name: @@ -63,11 +49,7 @@ def get_non_ignored_params(model): # Generator function that yields params that will be optimized. - b = [] - b.append(model.layer1) - b.append(model.layer2) - b.append(model.layer3) - b.append(model.layer4) + b = [model.layer1, model.layer2, model.layer3, model.layer4] for i in range(len(b)): for module_name, module in b[i].named_modules(): if 'bn' in module_name: @@ -76,8 +58,8 @@ yield param def get_fc_params(model): - b = [] - b.append(model.fc_angles) + # Generator function that yields fc layer params. + b = [model.fc_angles] for i in range(len(b)): for module_name, module in b[i].named_modules(): for name, param in module.named_parameters(): @@ -86,11 +68,8 @@ def load_filtered_state_dict(model, snapshot): # By user apaszke from discuss.pytorch.org model_dict = model.state_dict() - # 1. filter out unnecessary keys snapshot = {k: v for k, v in snapshot.items() if k in model_dict} - # 2. overwrite entries in the existing state dict model_dict.update(snapshot) - # 3. load the new state dict model.load_state_dict(model_dict) if __name__ == '__main__': @@ -106,8 +85,7 @@ # ResNet50 model = hopenet.ResNet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 3) - - load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) + load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth')) print 'Loading data.' @@ -117,6 +95,8 @@ if args.dataset == 'Pose_300W_LP': pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP_random_ds': + pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW2000': pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) elif args.dataset == 'BIWI': @@ -150,23 +130,16 @@ images = Variable(images).cuda(gpu) label_angles = Variable(cont_labels[:,:3]).cuda(gpu) - - optimizer.zero_grad() - model.zero_grad() - angles = model(images) loss = criterion(angles, label_angles) - + optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f' %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss.data[0])) - # if epoch == 0: - # torch.save(model.state_dict(), - # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: -- Gitblit v1.8.0