From 31fc66b795c0a57b8009d7b03f49f6cd099ceb29 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期六, 23 九月 2017 12:07:48 +0800 Subject: [PATCH] Trying superres --- code/test_alexnet.py | 144 ++++++++ code/test_resnet50_regression.py | 3 code/datasets.py | 65 +++ code/test_resnet50_regression_extreme.py | 132 +++++++ code/test_preangles_extreme.py | 151 ++++++++ code/train_preangles_focalloss.py | 224 +++++++++++++ code/vdsr.py | 40 ++ code/test_preangles_superres.py | 182 ++++++++++ code/loss.py | 37 ++ code/test_preangles.py | 3 10 files changed, 978 insertions(+), 3 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index da0603f..17f1899 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -106,15 +106,16 @@ # Crop the face pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) - k = 0.15 - x_min -= 0.6 * k * abs(x_max - x_min) + k = 0.20 + x_min -= 2 * k * abs(x_max - x_min) y_min -= 2 * k * abs(y_max - y_min) - x_max += 0.6 * k * abs(x_max - x_min) + x_max += 2 * k * abs(x_max - x_min) y_max += 0.6 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) @@ -138,6 +139,64 @@ # 2,000 return self.length +class AFLW2000_ds(Dataset): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): + self.data_dir = data_dir + self.transform = transform + self.img_ext = img_ext + self.annot_ext = annot_ext + + filename_list = get_list_from_filenames(filename_path) + + self.X_train = filename_list + self.y_train = filename_list + self.image_mode = image_mode + self.length = len(filename_list) + + def __getitem__(self, index): + img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # Crop the face + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.20 + x_min -= 2 * k * abs(x_max - x_min) + y_min -= 2 * k * abs(y_max - y_min) + x_max += 2 * k * abs(x_max - x_min) + y_max += 0.6 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) + + ds = 5 + original_size = img.size + img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=0) + img = img.resize((original_size[0], original_size[1]), resample=0) + + # We get the pose in radians + pose = utils.get_ypr_from_mat(mat_path) + # And convert to degrees. + pitch = pose[0] * 180 / np.pi + yaw = pose[1] * 180 / np.pi + roll = pose[2] * 180 / np.pi + # Bin values + bins = np.array(range(-99, 102, 3)) + labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) + cont_labels = torch.FloatTensor([yaw, pitch, roll]) + + if self.transform is not None: + img = self.transform(img) + + return img, labels, cont_labels, self.X_train[index] + + def __len__(self): + # 2,000 + return self.length + class AFLW_aug(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'): self.data_dir = data_dir diff --git a/code/loss.py b/code/loss.py new file mode 100644 index 0000000..805731b --- /dev/null +++ b/code/loss.py @@ -0,0 +1,37 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch.autograd import Variable + + +def one_hot(index, classes): + size = index.size() + (classes,) + view = index.size() + (1,) + + mask = torch.Tensor(*size).fill_(0) + index = index.view(*view) + ones = 1. + + if isinstance(index, Variable): + ones = Variable(torch.Tensor(index.size()).fill_(1)) + mask = Variable(mask, volatile=index.volatile) + + return mask.scatter_(1, index, ones) + + +class FocalLoss(nn.Module): + + def __init__(self, gamma=0, eps=1e-7): + super(FocalLoss, self).__init__() + self.gamma = gamma + self.eps = eps + + def forward(self, input, target): + y = one_hot(target, input.size(-1)) + logit = F.softmax(input) + logit = logit.clamp(self.eps, 1. - self.eps) + + loss = -1 * y * torch.log(logit) # cross entropy + loss = loss * (1 - logit) ** self.gamma # focal loss + + return loss.sum() diff --git a/code/test_alexnet.py b/code/test_alexnet.py new file mode 100644 index 0000000..d9cc0a3 --- /dev/null +++ b/code/test_alexnet.py @@ -0,0 +1,144 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + snapshot_path = args.snapshot + + model = hopenet.AlexNet(66) + + print 'Loading snapshot.' + # Load snapshot + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224), + transforms.CenterCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + transformations) + elif args.dataset == 'AFLW2000_ds': + pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, + transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, cont_labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + total += cont_labels.size(0) + label_yaw = cont_labels[:,0].float() + label_pitch = cont_labels[:,1].float() + label_roll = cont_labels[:,2].float() + + yaw, pitch, roll = model(images) + + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) + + # Continuous predictions + yaw_predicted = utils.softmax_temperature(yaw.data, 1) + pitch_predicted = utils.softmax_temperature(pitch.data, 1) + roll_predicted = utils.softmax_temperature(roll.data, 1) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() * 3 - 99 + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99 + + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw)) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch)) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll)) + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + if args.dataset == 'BIWI': + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) + else: + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + if args.batch_size == 1: + error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll))) + cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1) + utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0]) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) diff --git a/code/test_preangles.py b/code/test_preangles.py index d5c9ec7..b742195 100644 --- a/code/test_preangles.py +++ b/code/test_preangles.py @@ -67,6 +67,9 @@ if args.dataset == 'AFLW2000': pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000_ds': + pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, + transformations) elif args.dataset == 'BIWI': pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW': diff --git a/code/test_preangles_extreme.py b/code/test_preangles_extreme.py new file mode 100644 index 0000000..d82577b --- /dev/null +++ b/code/test_preangles_extreme.py @@ -0,0 +1,151 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) + parser.add_argument('--min_yaw', dest='min_yaw', type=float) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + snapshot_path = args.snapshot + + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + + print 'Loading snapshot.' + # Load snapshot + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224), + transforms.CenterCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + transformations) + elif args.dataset == 'AFLW2000_ds': + pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, + transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, cont_labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + label_yaw = cont_labels[:,0].float() + label_pitch = cont_labels[:,1].float() + label_roll = cont_labels[:,2].float() + + yaw, pitch, roll, angles = model(images) + + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) + + # Continuous predictions + yaw_predicted = utils.softmax_temperature(yaw.data, 1) + pitch_predicted = utils.softmax_temperature(pitch.data, 1) + roll_predicted = utils.softmax_temperature(roll.data, 1) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() * 3 - 99 + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99 + + # Mean absolute error + if args.min_yaw <= label_yaw[0]: + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw)) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch)) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll)) + total += 1 + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + if args.dataset == 'BIWI': + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) + else: + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + if args.batch_size == 1: + error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll))) + cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1) + utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0]) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) diff --git a/code/test_preangles_superres.py b/code/test_preangles_superres.py new file mode 100644 index 0000000..faf73d3 --- /dev/null +++ b/code/test_preangles_superres.py @@ -0,0 +1,182 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +from PIL import Image + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + snapshot_path = args.snapshot + + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) + + print 'Loading snapshot.' + # Load snapshot + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224), + transforms.CenterCrop(224), transforms.ToTensor()]) + + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + transformations) + elif args.dataset == 'AFLW2000_ds': + pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, + transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + # Super-resolution model + sr_model = torch.load('data/sr_model/model_epoch_50.pth')["model"] + sr_model = sr_model.cuda(gpu) + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, cont_labels, name) in enumerate(test_loader): + + ### START Super-resolution ### + # To new color space + img = transforms.ToPILImage()(images[0]) + print img + img = img.convert('YCbCr') + img_y, img_cb, img_cr = img.split() + + # Super-resolution + img_y_var = Variable(transforms.ToTensor()(img_y)).view(1, -1, img_y.size[0], img_y.size[1]).cuda(gpu) / 255. + out_sr = sr_model(img_y_var) + + img_h_y = out_sr.data[0].cpu().numpy().astype(np.float32) + + img_h_y = img_h_y * 255 + img_h_y[img_h_y<0] = 0 + img_h_y[img_h_y>255.] = 255. + img_h_y = img_h_y[0] + + img_new = np.zeros((img_h_y.shape[0], img_h_y.shape[1], 3), np.uint8) + img_new[:,:,0] = img_h_y + # img_new[:,:,0] = np.asarray(img_y) + img_new[:,:,1] = np.asarray(img_cb) + img_new[:,:,2] = np.asarray(img_cr) + img_new = Image.fromarray(img_new, "YCbCr").convert("RGB") + + # To tensor and normalize + img_new.save('output/test_superres/' + name[0] + '.jpg', "JPEG") + img = transforms.ToTensor()(img_new) + img = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img) + images = Variable(img.view(1,-1,img.shape[1],img.shape[2])).cuda(gpu) + + ### END Super-resolution ### + + total += cont_labels.size(0) + label_yaw = cont_labels[:,0].float() + label_pitch = cont_labels[:,1].float() + label_roll = cont_labels[:,2].float() + + yaw, pitch, roll, angles = model(images) + + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) + + # Continuous predictions + yaw_predicted = utils.softmax_temperature(yaw.data, 1) + pitch_predicted = utils.softmax_temperature(pitch.data, 1) + roll_predicted = utils.softmax_temperature(roll.data, 1) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() * 3 - 99 + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99 + + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw)) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch)) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll)) + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + if args.dataset == 'BIWI': + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) + else: + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + if args.batch_size == 1: + error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll))) + cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1) + utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0]) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) diff --git a/code/test_resnet50_regression.py b/code/test_resnet50_regression.py index 553b439..85207f8 100644 --- a/code/test_resnet50_regression.py +++ b/code/test_resnet50_regression.py @@ -62,6 +62,9 @@ if args.dataset == 'AFLW2000': pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000_ds': + pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, + transformations) elif args.dataset == 'BIWI': pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW': diff --git a/code/test_resnet50_regression_extreme.py b/code/test_resnet50_regression_extreme.py new file mode 100644 index 0000000..656cda5 --- /dev/null +++ b/code/test_resnet50_regression_extreme.py @@ -0,0 +1,132 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) + parser.add_argument('--min_yaw', dest='min_yaw', type=float) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + snapshot_path = args.snapshot + + model = hopenet.ResNet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 3) + + print 'Loading snapshot.' + # Load snapshot + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224), + transforms.CenterCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + transformations) + elif args.dataset == 'AFLW2000_ds': + pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, + transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, cont_labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + label_yaw = cont_labels[:,0].float() + label_pitch = cont_labels[:,1].float() + label_roll = cont_labels[:,2].float() + + angles = model(images) + yaw_predicted = angles[:,0].data.cpu() + pitch_predicted = angles[:,1].data.cpu() + roll_predicted = angles[:,2].data.cpu() + + # Mean absolute error + if args.min_yaw <= label_yaw[0]: + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw)) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch)) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll)) + total += 1 + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + if args.dataset == 'BIWI': + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) + else: + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + if args.batch_size == 1: + error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll))) + cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1) + utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0]) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) diff --git a/code/train_preangles_focalloss.py b/code/train_preangles_focalloss.py new file mode 100644 index 0000000..64b42d6 --- /dev/null +++ b/code/train_preangles_focalloss.py @@ -0,0 +1,224 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torchvision +import torch.backends.cudnn as cudnn +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import torch.utils.model_zoo as model_zoo + +import time +import loss + +model_urls = { + 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', + 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', + 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', + 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', + 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', +} + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.', + default=5, type=int) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=16, type=int) + parser.add_argument('--lr', dest='lr', help='Base learning rate.', + default=0.001, type=float) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) + parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', + default=0.001, type=float) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) + + args = parser.parse_args() + return args + +def get_ignored_params(model): + # Generator function that yields ignored params. + b = [] + b.append(model.conv1) + b.append(model.bn1) + b.append(model.fc_finetune) + for i in range(len(b)): + for module_name, module in b[i].named_modules(): + if 'bn' in module_name: + module.eval() + for name, param in module.named_parameters(): + yield param + +def get_non_ignored_params(model): + # Generator function that yields params that will be optimized. + b = [] + b.append(model.layer1) + b.append(model.layer2) + b.append(model.layer3) + b.append(model.layer4) + for i in range(len(b)): + for module_name, module in b[i].named_modules(): + if 'bn' in module_name: + module.eval() + for name, param in module.named_parameters(): + yield param + +def get_fc_params(model): + b = [] + b.append(model.fc_yaw) + b.append(model.fc_pitch) + b.append(model.fc_roll) + for i in range(len(b)): + for module_name, module in b[i].named_modules(): + for name, param in module.named_parameters(): + yield param + +def load_filtered_state_dict(model, snapshot): + # By user apaszke from discuss.pytorch.org + model_dict = model.state_dict() + # 1. filter out unnecessary keys + snapshot = {k: v for k, v in snapshot.items() if k in model_dict} + # 2. overwrite entries in the existing state dict + model_dict.update(snapshot) + # 3. load the new state dict + model.load_state_dict(model_dict) + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + num_epochs = args.num_epochs + batch_size = args.batch_size + gpu = args.gpu_id + + if not os.path.exists('output/snapshots'): + os.makedirs('output/snapshots') + + # ResNet101 with 3 outputs + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(240), + transforms.RandomCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + if args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW_aug': + pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() + train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=batch_size, + shuffle=True, + num_workers=2) + + model.cuda(gpu) + softmax = nn.Softmax().cuda(gpu) + criterion = loss.FocalLoss() + reg_criterion = nn.MSELoss().cuda(gpu) + # Regression loss coefficient + alpha = args.alpha + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) + + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, + {'params': get_non_ignored_params(model), 'lr': args.lr}, + {'params': get_fc_params(model), 'lr': args.lr * 5}], + lr = args.lr) + + print 'Ready to train network.' + print 'First phase of training.' + for epoch in range(num_epochs): + # start = time.time() + for i, (images, labels, cont_labels, name) in enumerate(train_loader): + # print i + # print 'start: ', time.time() - start + images = Variable(images).cuda(gpu) + label_yaw = Variable(labels[:,0].contiguous()) + label_pitch = Variable(labels[:,1].contiguous()) + label_roll = Variable(labels[:,2].contiguous()) + + label_angles = Variable(cont_labels[:,:3]).cuda(gpu) + label_yaw_cont = Variable(cont_labels[:,0]).cuda(gpu) + label_pitch_cont = Variable(cont_labels[:,1]).cuda(gpu) + label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu) + + optimizer.zero_grad() + model.zero_grad() + + pre_yaw, pre_pitch, pre_roll, angles = model(images) + # Cross entropy loss + loss_yaw = criterion(pre_yaw.cpu(), label_yaw).cuda(gpu) + loss_pitch = criterion(pre_pitch.cpu(), label_pitch).cuda(gpu) + loss_roll = criterion(pre_roll.cpu(), label_roll).cuda(gpu) + + # MSE loss + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) + + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99 + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99 + + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) + loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont) + + # Total loss + loss_yaw += alpha * loss_reg_yaw + loss_pitch += alpha * loss_reg_pitch + loss_roll += alpha * loss_reg_roll + + loss_seq = [loss_yaw, loss_pitch, loss_roll] + grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + torch.autograd.backward(loss_seq, grad_seq) + optimizer.step() + + # print 'end: ', time.time() - start + + if (i+1) % 100 == 0: + print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' + %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) + # if epoch == 0: + # torch.save(model.state_dict(), + # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') + + # Save models at numbered epochs. + if epoch % 1 == 0 and epoch < num_epochs: + print 'Taking snapshot...' + torch.save(model.state_dict(), + 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') diff --git a/code/vdsr.py b/code/vdsr.py new file mode 100755 index 0000000..1c4f163 --- /dev/null +++ b/code/vdsr.py @@ -0,0 +1,40 @@ +import torch +import torch.nn as nn +from math import sqrt + +class Conv_ReLU_Block(nn.Module): + def __init__(self): + super(Conv_ReLU_Block, self).__init__() + self.conv = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False) + self.relu = nn.ReLU(inplace=True) + + def forward(self, x): + return self.relu(self.conv(x)) + +class Net(nn.Module): + def __init__(self): + super(Net, self).__init__() + self.residual_layer = self.make_layer(Conv_ReLU_Block, 18) + self.input = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False) + self.output = nn.Conv2d(in_channels=64, out_channels=1, kernel_size=3, stride=1, padding=1, bias=False) + self.relu = nn.ReLU(inplace=True) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, sqrt(2. / n)) + + def make_layer(self, block, num_of_layer): + layers = [] + for _ in range(num_of_layer): + layers.append(block()) + return nn.Sequential(*layers) + + def forward(self, x): + residual = x + out = self.relu(self.input(x)) + out = self.residual_layer(out) + out = self.output(out) + out = torch.add(out,residual) + return out + \ No newline at end of file -- Gitblit v1.8.0