From 31fc66b795c0a57b8009d7b03f49f6cd099ceb29 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期六, 23 九月 2017 12:07:48 +0800
Subject: [PATCH] Trying superres

---
 code/datasets.py |   65 +++++++++++++++++++++++++++++++-
 1 files changed, 62 insertions(+), 3 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index da0603f..17f1899 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -106,15 +106,16 @@
 
         # Crop the face
         pt2d = utils.get_pt2d_from_mat(mat_path)
+
         x_min = min(pt2d[0,:])
         y_min = min(pt2d[1,:])
         x_max = max(pt2d[0,:])
         y_max = max(pt2d[1,:])
 
-        k = 0.15
-        x_min -= 0.6 * k * abs(x_max - x_min)
+        k = 0.20
+        x_min -= 2 * k * abs(x_max - x_min)
         y_min -= 2 * k * abs(y_max - y_min)
-        x_max += 0.6 * k * abs(x_max - x_min)
+        x_max += 2 * k * abs(x_max - x_min)
         y_max += 0.6 * k * abs(y_max - y_min)
         img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
@@ -138,6 +139,64 @@
         # 2,000
         return self.length
 
+class AFLW2000_ds(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.image_mode = image_mode
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
+        img = img.convert(self.image_mode)
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+
+        # Crop the face
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        k = 0.20
+        x_min -= 2 * k * abs(x_max - x_min)
+        y_min -= 2 * k * abs(y_max - y_min)
+        x_max += 2 * k * abs(x_max - x_min)
+        y_max += 0.6 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        ds = 5
+        original_size = img.size
+        img = img.resize((img.size[0] / ds, img.size[1] / ds), resample=0)
+        img = img.resize((original_size[0], original_size[1]), resample=0)
+
+        # We get the pose in radians
+        pose = utils.get_ypr_from_mat(mat_path)
+        # And convert to degrees.
+        pitch = pose[0] * 180 / np.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
+        cont_labels = torch.FloatTensor([yaw, pitch, roll])
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, cont_labels, self.X_train[index]
+
+    def __len__(self):
+        # 2,000
+        return self.length
+
 class AFLW_aug(Dataset):
     def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
         self.data_dir = data_dir

--
Gitblit v1.8.0