From 3de9cc574450403fc33e9dfd4ae298d219e2ea95 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期六, 12 八月 2017 10:57:40 +0800
Subject: [PATCH] Cleanup

---
 code/datasets.py |  112 ++++++++++++++++++++++++++++++++++++++++++++++++--------
 1 files changed, 96 insertions(+), 16 deletions(-)

diff --git a/code/datasets.py b/code/datasets.py
index 3750e71..f6fcc45 100644
--- a/code/datasets.py
+++ b/code/datasets.py
@@ -7,6 +7,10 @@
 
 import utils
 
+def stack_grayscale_tensor(tensor):
+    tensor = torch.cat([tensor, tensor, tensor], 0)
+    return tensor
+
 class Pose_300W_LP(Dataset):
     def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
         self.data_dir = data_dir
@@ -66,7 +70,7 @@
         return self.length
 
 class Pose_300W_LP_binned(Dataset):
-    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
         self.img_ext = img_ext
@@ -76,14 +80,88 @@
 
         self.X_train = filename_list
         self.y_train = filename_list
+        self.image_mode = image_mode
         self.length = len(filename_list)
 
     def __getitem__(self, index):
         img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
-        img = img.convert('RGB')
+        img = img.convert(self.image_mode)
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+        shape_path = os.path.join(self.data_dir, self.y_train[index] + '_shape.npy')
+
+        # Crop the face
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        k = 0.15
+        x_min -= k * abs(x_max - x_min)
+        y_min -= 4 * k * abs(y_max - y_min)
+        x_max += k * abs(x_max - x_min)
+        y_max += 0.4 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
 
         # We get the pose in radians
-        pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
+        pose = utils.get_ypr_from_mat(mat_path)
+        # And convert to degrees.
+        pitch = pose[0] * 180 / np.pi
+        yaw = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
+        # Bin values
+        bins = np.array(range(-99, 102, 3))
+        binned_pose = np.digitize([yaw, pitch, roll], bins) - 1
+
+        # Get shape
+        shape = np.load(shape_path)
+
+        labels = torch.LongTensor(np.concatenate((binned_pose, shape), axis = 0))
+
+        if self.transform is not None:
+            img = self.transform(img)
+
+        return img, labels, self.X_train[index]
+
+    def __len__(self):
+        # 122,450
+        return self.length
+
+class AFLW2000_binned(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'):
+        self.data_dir = data_dir
+        self.transform = transform
+        self.img_ext = img_ext
+        self.annot_ext = annot_ext
+
+        filename_list = get_list_from_filenames(filename_path)
+
+        self.X_train = filename_list
+        self.y_train = filename_list
+        self.image_mode = image_mode
+        self.length = len(filename_list)
+
+    def __getitem__(self, index):
+        img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
+        img = img.convert(self.image_mode)
+        mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
+
+        # Crop the face
+        pt2d = utils.get_pt2d_from_mat(mat_path)
+        x_min = min(pt2d[0,:])
+        y_min = min(pt2d[1,:])
+        x_max = max(pt2d[0,:])
+        y_max = max(pt2d[1,:])
+
+        k = 0.15
+        x_min -= k * abs(x_max - x_min)
+        y_min -= 4 * k * abs(y_max - y_min)
+        x_max += k * abs(x_max - x_min)
+        y_max += 0.4 * k * abs(y_max - y_min)
+        img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max)))
+
+        # We get the pose in radians
+        pose = utils.get_ypr_from_mat(mat_path)
         # And convert to degrees.
         pitch = pose[0] * 180 / np.pi
         yaw = pose[1] * 180 / np.pi
@@ -98,11 +176,11 @@
         return img, labels, self.X_train[index]
 
     def __len__(self):
-        # 122,450
+        # 2,000
         return self.length
 
-class AFLW2000_binned(Dataset):
-    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'):
+class AFLW(Dataset):
+    def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.txt', image_mode='RGB'):
         self.data_dir = data_dir
         self.transform = transform
         self.img_ext = img_ext
@@ -112,31 +190,33 @@
 
         self.X_train = filename_list
         self.y_train = filename_list
+        self.image_mode = image_mode
         self.length = len(filename_list)
 
     def __getitem__(self, index):
         img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext))
-        img = img.convert('RGB')
+        img = img.convert(self.image_mode)
+        txt_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)
 
         # We get the pose in radians
-        pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext))
+        annot = open(txt_path, 'r')
+        line = annot.readline().split(' ')
+        pose = [float(line[1]), float(line[2]), float(line[3])]
         # And convert to degrees.
-        pitch, yaw, roll = pose * 180 / np.pi
+        yaw = pose[0] * 180 / np.pi
+        pitch = pose[1] * 180 / np.pi
+        roll = pose[2] * 180 / np.pi
         # Bin values
         bins = np.array(range(-99, 102, 3))
-        binned_pitch = torch.DoubleTensor(np.digitize(pitch, bins) - 1)
-        binned_yaw = torch.DoubleTensor(np.digitize(yaw, bins) - 1)
-        binned_roll = torch.DoubleTensor(np.digitize(roll, bins) - 1)
-
-        label = binned_yaw, binned_pitch, binned_roll
+        labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1)
 
         if self.transform is not None:
             img = self.transform(img)
 
-        return img, label, self.X_train[index]
+        return img, labels, self.X_train[index]
 
     def __len__(self):
-        # 2,000
+        # Check how many
         return self.length
 
 def get_list_from_filenames(file_path):

--
Gitblit v1.8.0