From 43416c4717d2430c3e11f042294d12b781fee2e1 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期三, 27 九月 2017 04:09:30 +0800 Subject: [PATCH] Failed lstm experiment --- code/batch_testing_preangles.py | 20 ++++++++++---------- 1 files changed, 10 insertions(+), 10 deletions(-) diff --git a/code/batch_testing_preangles.py b/code/batch_testing_preangles.py index 11390b0..f9b8ac3 100644 --- a/code/batch_testing_preangles.py +++ b/code/batch_testing_preangles.py @@ -50,7 +50,7 @@ # ResNet101 with 3 outputs. # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) @@ -61,7 +61,7 @@ print 'Loading data.' transformations = transforms.Compose([transforms.Scale(224), - transforms.RandomCrop(224), transforms.ToTensor(), + transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) if args.dataset == 'AFLW2000': @@ -114,12 +114,12 @@ l1loss = torch.nn.L1Loss(size_average=False) - for i, (images, labels, name) in enumerate(test_loader): + for i, (images, labels, cont_labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) - total += labels.size(0) - label_yaw = labels[:,0].float() - label_pitch = labels[:,1].float() - label_roll = labels[:,2].float() + total += cont_labels.size(0) + label_yaw = cont_labels[:,0].float() + label_pitch = cont_labels[:,1].float() + label_roll = cont_labels[:,2].float() yaw, pitch, roll, angles = model(images) @@ -138,9 +138,9 @@ roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) - pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) - roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) + yaw_error += torch.sum(torch.abs(yaw_predicted * 3 - 99 - label_yaw)) + pitch_error += torch.sum(torch.abs(pitch_predicted * 3 - 99 - label_pitch)) + roll_error += torch.sum(torch.abs(roll_predicted * 3 - 99 - label_roll)) if args.save_viz: name = name[0] -- Gitblit v1.8.0