From 43416c4717d2430c3e11f042294d12b781fee2e1 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期三, 27 九月 2017 04:09:30 +0800
Subject: [PATCH] Failed lstm experiment

---
 code/batch_testing_preangles.py |   20 ++++++++++----------
 1 files changed, 10 insertions(+), 10 deletions(-)

diff --git a/code/batch_testing_preangles.py b/code/batch_testing_preangles.py
index 11390b0..f9b8ac3 100644
--- a/code/batch_testing_preangles.py
+++ b/code/batch_testing_preangles.py
@@ -50,7 +50,7 @@
     # ResNet101 with 3 outputs.
     # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
     # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, 0)
     # ResNet18
     # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
 
@@ -61,7 +61,7 @@
     print 'Loading data.'
 
     transformations = transforms.Compose([transforms.Scale(224),
-    transforms.RandomCrop(224), transforms.ToTensor(),
+    transforms.CenterCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
     if args.dataset == 'AFLW2000':
@@ -114,12 +114,12 @@
 
         l1loss = torch.nn.L1Loss(size_average=False)
 
-        for i, (images, labels, name) in enumerate(test_loader):
+        for i, (images, labels, cont_labels, name) in enumerate(test_loader):
             images = Variable(images).cuda(gpu)
-            total += labels.size(0)
-            label_yaw = labels[:,0].float()
-            label_pitch = labels[:,1].float()
-            label_roll = labels[:,2].float()
+            total += cont_labels.size(0)
+            label_yaw = cont_labels[:,0].float()
+            label_pitch = cont_labels[:,1].float()
+            label_roll = cont_labels[:,2].float()
 
             yaw, pitch, roll, angles = model(images)
 
@@ -138,9 +138,9 @@
             roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
 
             # Mean absolute error
-            yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
-            pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
-            roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
+            yaw_error += torch.sum(torch.abs(yaw_predicted * 3 - 99 - label_yaw))
+            pitch_error += torch.sum(torch.abs(pitch_predicted * 3 - 99 - label_pitch))
+            roll_error += torch.sum(torch.abs(roll_predicted * 3 - 99 - label_roll))
 
             if args.save_viz:
                 name = name[0]

--
Gitblit v1.8.0