From 43416c4717d2430c3e11f042294d12b781fee2e1 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期三, 27 九月 2017 04:09:30 +0800 Subject: [PATCH] Failed lstm experiment --- code/hopenet.py | 208 +++++++++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 207 insertions(+), 1 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index 7b5f764..b2dd097 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -4,6 +4,16 @@ import math import torch.nn.functional as F +def ycbcr_to_rgb(input): + # input is mini-batch N x 3 x H x W of an YCbCr image + output = Variable(input.data.new(*input.size())) + output[:, 0, :, :] = input[:, 0, :, :] + (input[:, 2, :, :] - 0.502) * 1.4 + output[:, 1, :, :] = input[:, 0, :, :] - (input[:, 1, :, :] - 0.502) * 0.343 - (input[:, 2, :, :] - 0.502) * 0.711 + output[:, 2, :, :] = input[:, 0, :, :] + (input[:, 1, :, :] - 0.502) * 1.765 + # output[output <= 0] = 0. + # output[output > 1] = 1. + return output + # CNN Model (2 conv layer) class Simple_CNN(nn.Module): def __init__(self): @@ -122,7 +132,7 @@ # angles predicts the residual for idx in xrange(self.iter_ref): - angles.append(self.fc_finetune(torch.cat((preangles, x), 1))) + angles.append(self.fc_finetune(torch.cat((angles[idx], x), 1))) return pre_yaw, pre_pitch, pre_roll, angles @@ -224,3 +234,199 @@ pitch = self.fc_pitch(x) roll = self.fc_roll(x) return yaw, pitch, roll + +class Hopenet_SR(nn.Module): + # This is just Hopenet with 3 output layers for yaw, pitch and roll. + def __init__(self, block, layers, num_bins, upscale_factor): + self.inplanes = 64 + super(Hopenet, self).__init__() + # Super resolution sub-network + self.sr_relu = nn.ReLU() + self.sr_conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2)) + self.sr_conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)) + self.sr_conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1)) + self.sr_conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1)) + self.sr_pixel_shuffle = nn.PixelShuffle(upscale_factor) + + # Pose estimation sub-network + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7) + self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) + self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) + self.fc_roll = nn.Linear(512 * block.expansion, num_bins) + + self.softmax = nn.Softmax() + self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() + + self.upscale_factor = upscale_factor + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + # Super-resolution sub-network + y_channel = x[:,0,:,:] + + sr_y = self.sr_relu(self.sr_conv1(y_channel)) + sr_y = self.sr_relu(self.sr_conv2(sr_y)) + sr_y = self.sr_relu(self.sr_conv3(sr_y)) + sr_y = self.sr_pixel_shuffle(self.sr_conv4(sr_y)) + + x[:,0,:,:] = sr_y + x_rgb = ycbcr_to_rgb(x) + + out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC) + out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC) + out_img = Image.merge('YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB') + + # Pose estimation sub-network + x = self.conv1(sr_output) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + pre_yaw = self.fc_yaw(x) + pre_pitch = self.fc_pitch(x) + pre_roll = self.fc_roll(x) + + yaw = self.softmax(pre_yaw) + yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) + pitch = self.softmax(pre_pitch) + pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) + roll = self.softmax(pre_roll) + roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) + yaw = yaw.view(yaw.size(0), 1) + pitch = pitch.view(pitch.size(0), 1) + roll = roll.view(roll.size(0), 1) + angles = [] + preangles = torch.cat([yaw, pitch, roll], 1) + angles.append(preangles) + + return pre_yaw, pre_pitch, pre_roll, angles, sr_output + +class Hopenet_LSTM(nn.Module): + # This is just Hopenet with 3 output layers for yaw, pitch and roll. + def __init__(self, block, layers, num_bins): + self.inplanes = 64 + super(Hopenet_LSTM, self).__init__() + self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = nn.BatchNorm2d(64) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2) + self.avgpool = nn.AvgPool2d(7) + self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) + self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) + self.fc_roll = nn.Linear(512 * block.expansion, num_bins) + + self.softmax = nn.Softmax() + self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) + + self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() + + self.lstm = nn.LSTM(512 * block.expansion + 3, 256 * block.expansion, 2, batch_first=True) + self.fc_lstm = nn.Linear(256 * block.expansion, 3) + + self.block_expansion = block.expansion + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.data.normal_(0, math.sqrt(2. / n)) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + def _make_layer(self, block, planes, blocks, stride=1): + downsample = None + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + nn.Conv2d(self.inplanes, planes * block.expansion, + kernel_size=1, stride=stride, bias=False), + nn.BatchNorm2d(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample)) + self.inplanes = planes * block.expansion + for i in range(1, blocks): + layers.append(block(self.inplanes, planes)) + + return nn.Sequential(*layers) + + def forward(self, x): + + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + x = x.view(x.size(0), -1) + pre_yaw = self.fc_yaw(x) + pre_pitch = self.fc_pitch(x) + pre_roll = self.fc_roll(x) + + # Yaw, pitch, roll + yaw = self.softmax(pre_yaw) + yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 + pitch = self.softmax(pre_pitch) + pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 + roll = self.softmax(pre_roll) + roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 + yaw = yaw.view(yaw.size(0), 1) + pitch = pitch.view(pitch.size(0), 1) + roll = roll.view(roll.size(0), 1) + preangles = torch.cat([yaw, pitch, roll], 1) + + residuals, _ = self.lstm(torch.cat((preangles, x), 1), (h0, c0)) + residuals = self.fc_lstm(residuals[:, -1, :]) + final_angles = preangles + residuals + + return pre_yaw, pre_pitch, pre_roll, preangles, final_angles -- Gitblit v1.8.0