From 43416c4717d2430c3e11f042294d12b781fee2e1 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期三, 27 九月 2017 04:09:30 +0800 Subject: [PATCH] Failed lstm experiment --- code/test.py | 142 +++++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 142 insertions(+), 0 deletions(-) diff --git a/code/test.py b/code/test.py new file mode 100644 index 0000000..4983105 --- /dev/null +++ b/code/test.py @@ -0,0 +1,142 @@ +import numpy as np +import torch +import torch.nn as nn +from torch.autograd import Variable +from torch.utils.data import DataLoader +from torchvision import transforms +import torch.backends.cudnn as cudnn +import torchvision +import torch.nn.functional as F + +import cv2 +import matplotlib.pyplot as plt +import sys +import os +import argparse + +import datasets +import hopenet +import utils + +def parse_args(): + """Parse input arguments.""" + parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') + parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', + default=0, type=int) + parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', + default='', type=str) + parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', + default='', type=str) + parser.add_argument('--snapshot', dest='snapshot', help='Path of model snapshot.', + default='', type=str) + parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', + default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) + parser.add_argument('--iter_ref', dest='iter_ref', default=1, type=int) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='AFLW2000', type=str) + + args = parser.parse_args() + + return args + +if __name__ == '__main__': + args = parse_args() + + cudnn.enabled = True + gpu = args.gpu_id + snapshot_path = args.snapshot + + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) + # ResNet18 + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + + print 'Loading snapshot.' + # Load snapshot + saved_state_dict = torch.load(snapshot_path) + model.load_state_dict(saved_state_dict) + + print 'Loading data.' + + transformations = transforms.Compose([transforms.Scale(224), + transforms.CenterCrop(224), transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) + + if args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, + transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() + test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, + batch_size=args.batch_size, + num_workers=2) + + model.cuda(gpu) + + print 'Ready to test network.' + + # Test the Model + model.eval() # Change model to 'eval' mode (BN uses moving mean/var). + total = 0 + yaw_error = .0 + pitch_error = .0 + roll_error = .0 + + l1loss = torch.nn.L1Loss(size_average=False) + + for i, (images, labels, cont_labels, name) in enumerate(test_loader): + images = Variable(images).cuda(gpu) + total += cont_labels.size(0) + label_yaw = cont_labels[:,0].float() + label_pitch = cont_labels[:,1].float() + label_roll = cont_labels[:,2].float() + + pre_yaw, pre_pitch, pre_roll, angles = model(images) + yaw = angles[0][:,0].cpu().data * 3 - 99 + pitch = angles[0][:,1].cpu().data * 3 - 99 + roll = angles[0][:,2].cpu().data * 3 - 99 + + for idx in xrange(1,args.iter_ref+1): + yaw += angles[idx][:,0].cpu().data * 3 - 99 + pitch += angles[idx][:,1].cpu().data * 3 - 99 + roll += angles[idx][:,2].cpu().data * 3 - 99 + + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw - label_yaw)) + pitch_error += torch.sum(torch.abs(pitch - label_pitch)) + roll_error += torch.sum(torch.abs(roll - label_roll)) + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + if args.dataset == 'BIWI': + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) + else: + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + + if args.batch_size == 1: + error_string = 'y %.4f, p %.4f, r %.4f' % (torch.sum(torch.abs(yaw - label_yaw) * 3), torch.sum(torch.abs(pitch - label_pitch) * 3), torch.sum(torch.abs(roll - label_roll) * 3)) + cv2_img = cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=2, color=(0,255,0), thickness=2) + utils.plot_pose_cube(cv2_img, yaw[0] * 3 - 99, pitch[0] * 3 - 99, roll[0] * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + + print('Test error in degrees of the model on the ' + str(total) + + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, + pitch_error / total, roll_error / total)) + + # Binned accuracy + # for idx in xrange(len(yaw_correct)): + # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total -- Gitblit v1.8.0