From 43416c4717d2430c3e11f042294d12b781fee2e1 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期三, 27 九月 2017 04:09:30 +0800 Subject: [PATCH] Failed lstm experiment --- code/test_preangles.py | 28 ++++++++++++++++++---------- 1 files changed, 18 insertions(+), 10 deletions(-) diff --git a/code/test_preangles.py b/code/test_preangles.py index 9899572..b742195 100644 --- a/code/test_preangles.py +++ b/code/test_preangles.py @@ -67,10 +67,15 @@ if args.dataset == 'AFLW2000': pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000_ds': + pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list, + transformations) elif args.dataset == 'BIWI': pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFLW': pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) elif args.dataset == 'AFW': pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) else: @@ -116,24 +121,27 @@ pitch_predicted = utils.softmax_temperature(pitch.data, 1) roll_predicted = utils.softmax_temperature(roll.data, 1) - yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() - pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() - roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() * 3 - 99 + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99 # Mean absolute error - yaw_error += torch.sum(torch.abs(yaw_predicted * 3 - 99 - label_yaw)) - pitch_error += torch.sum(torch.abs(pitch_predicted * 3 - 99 - label_pitch)) - roll_error += torch.sum(torch.abs(roll_predicted * 3 - 99 - label_roll)) + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw)) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch)) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll)) # Save images with pose cube. # TODO: fix for larger batch size if args.save_viz: name = name[0] - cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + if args.dataset == 'BIWI': + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png')) + else: + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) if args.batch_size == 1: - error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw) * 3), torch.sum(torch.abs(pitch_predicted - label_pitch) * 3), torch.sum(torch.abs(roll_predicted - label_roll) * 3)) - cv2_img = cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1) - utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) + error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll))) + cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1) + utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0]) cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) print('Test error in degrees of the model on the ' + str(total) + -- Gitblit v1.8.0