From 43416c4717d2430c3e11f042294d12b781fee2e1 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期三, 27 九月 2017 04:09:30 +0800
Subject: [PATCH] Failed lstm experiment

---
 code/test_preangles.py |   28 ++++++++++++++++++----------
 1 files changed, 18 insertions(+), 10 deletions(-)

diff --git a/code/test_preangles.py b/code/test_preangles.py
index 9899572..b742195 100644
--- a/code/test_preangles.py
+++ b/code/test_preangles.py
@@ -67,10 +67,15 @@
     if args.dataset == 'AFLW2000':
         pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list,
                                 transformations)
+    elif args.dataset == 'AFLW2000_ds':
+        pose_dataset = datasets.AFLW2000_ds(args.data_dir, args.filename_list,
+                                transformations)
     elif args.dataset == 'BIWI':
         pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFLW':
         pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'Pose_300W_LP':
+        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFW':
         pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
     else:
@@ -116,24 +121,27 @@
         pitch_predicted = utils.softmax_temperature(pitch.data, 1)
         roll_predicted = utils.softmax_temperature(roll.data, 1)
 
-        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu()
-        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu()
-        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu()
+        yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() * 3 - 99
+        pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() * 3 - 99
+        roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() * 3 - 99
 
         # Mean absolute error
-        yaw_error += torch.sum(torch.abs(yaw_predicted * 3 - 99 - label_yaw))
-        pitch_error += torch.sum(torch.abs(pitch_predicted * 3 - 99 - label_pitch))
-        roll_error += torch.sum(torch.abs(roll_predicted * 3 - 99 - label_roll))
+        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw))
+        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch))
+        roll_error += torch.sum(torch.abs(roll_predicted - label_roll))
 
         # Save images with pose cube.
         # TODO: fix for larger batch size
         if args.save_viz:
             name = name[0]
-            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+            if args.dataset == 'BIWI':
+                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '_rgb.png'))
+            else:
+                cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
             if args.batch_size == 1:
-                error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw) * 3), torch.sum(torch.abs(pitch_predicted - label_pitch) * 3), torch.sum(torch.abs(roll_predicted - label_roll) * 3))
-                cv2_img = cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1)
-            utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
+                error_string = 'y %.2f, p %.2f, r %.2f' % (torch.sum(torch.abs(yaw_predicted - label_yaw)), torch.sum(torch.abs(pitch_predicted - label_pitch)), torch.sum(torch.abs(roll_predicted - label_roll)))
+                cv2.putText(cv2_img, error_string, (30, cv2_img.shape[0]- 30), fontFace=1, fontScale=1, color=(0,0,255), thickness=1)
+            utils.plot_pose_cube(cv2_img, yaw_predicted[0], pitch_predicted[0], roll_predicted[0])
             cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
 
     print('Test error in degrees of the model on the ' + str(total) +

--
Gitblit v1.8.0