From 43416c4717d2430c3e11f042294d12b781fee2e1 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期三, 27 九月 2017 04:09:30 +0800 Subject: [PATCH] Failed lstm experiment --- code/train.py | 148 +++++++++++++++++++++++++++++++----------------- 1 files changed, 95 insertions(+), 53 deletions(-) diff --git a/code/train.py b/code/train.py index 826793d..3525f87 100644 --- a/code/train.py +++ b/code/train.py @@ -43,6 +43,12 @@ default='', type=str) parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', default='', type=str) + parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str) + parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.', + default=0.001, type=float) + parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.', + default=1, type=int) + parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str) args = parser.parse_args() return args @@ -51,26 +57,37 @@ b = [] b.append(model.conv1) b.append(model.bn1) + for i in range(len(b)): + for module_name, module in b[i].named_modules(): + if 'bn' in module_name: + module.eval() + for name, param in module.named_parameters(): + yield param + +def get_non_ignored_params(model): + # Generator function that yields params that will be optimized. + b = [] b.append(model.layer1) b.append(model.layer2) b.append(model.layer3) b.append(model.layer4) for i in range(len(b)): - for j in b[i].modules(): - for k in j.parameters(): - yield k + for module_name, module in b[i].named_modules(): + if 'bn' in module_name: + module.eval() + for name, param in module.named_parameters(): + yield param -def get_non_ignored_params(model): - # Generator function that yields params that will be optimized. +def get_fc_params(model): b = [] b.append(model.fc_yaw) b.append(model.fc_pitch) b.append(model.fc_roll) b.append(model.fc_finetune) for i in range(len(b)): - for j in b[i].modules(): - for k in j.parameters(): - yield k + for module_name, module in b[i].named_modules(): + for name, param in module.named_parameters(): + yield param def load_filtered_state_dict(model, snapshot): # By user apaszke from discuss.pytorch.org @@ -97,50 +114,67 @@ # ResNet101 with 3 outputs # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50'])) print 'Loading data.' - # transformations = transforms.Compose([transforms.Scale(224), - # transforms.RandomCrop(224), - # transforms.ToTensor()]) - - transformations = transforms.Compose([transforms.Scale(250), + transformations = transforms.Compose([transforms.Scale(240), transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) - pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, - transformations) + if args.dataset == 'Pose_300W_LP': + pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW2000': + pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'BIWI': + pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW': + pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFLW_aug': + pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations) + elif args.dataset == 'AFW': + pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations) + else: + print 'Error: not a valid dataset name' + sys.exit() train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, shuffle=True, num_workers=2) model.cuda(gpu) + softmax = nn.Softmax() criterion = nn.CrossEntropyLoss().cuda() reg_criterion = nn.MSELoss().cuda() + smooth_l1_loss = nn.SmoothL1Loss().cuda() # Regression loss coefficient - alpha = 0.01 + alpha = args.alpha idx_tensor = [idx for idx in xrange(66)] - idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu) - optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, - {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], - lr = args.lr) + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0}, + {'params': get_non_ignored_params(model), 'lr': args.lr}, + {'params': get_fc_params(model), 'lr': args.lr * 5}], + lr = args.lr) print 'Ready to train network.' print 'First phase of training.' for epoch in range(num_epochs): - for i, (images, labels, name) in enumerate(train_loader): + for i, (images, labels, cont_labels, name) in enumerate(train_loader): images = Variable(images.cuda(gpu)) label_yaw = Variable(labels[:,0].cuda(gpu)) label_pitch = Variable(labels[:,1].cuda(gpu)) label_roll = Variable(labels[:,2].cuda(gpu)) + + label_angles = Variable(cont_labels[:,:3].cuda(gpu)) + label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu)) + label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu)) + label_roll_cont = Variable(cont_labels[:,2].cuda(gpu)) optimizer.zero_grad() model.zero_grad() @@ -153,17 +187,17 @@ loss_roll = criterion(pre_roll, label_roll) # MSE loss - yaw_predicted = F.softmax(pre_yaw) - pitch_predicted = F.softmax(pre_pitch) - roll_predicted = F.softmax(pre_roll) + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99 + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99 - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) + loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont) # Total loss loss_yaw += alpha * loss_reg_yaw @@ -180,22 +214,26 @@ %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) # if epoch == 0: # torch.save(model.state_dict(), - # 'output/snapshots/hopenet50_epoch_'+ str(i+1) + '.pkl') + # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/hopenet50_epoch_'+ str(epoch+1) + '.pkl') + 'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl') print 'Second phase of training (finetuning layer).' for epoch in range(num_epochs_ft): - for i, (images, labels, name) in enumerate(train_loader): + for i, (images, labels, cont_labels, name) in enumerate(train_loader): images = Variable(images.cuda(gpu)) label_yaw = Variable(labels[:,0].cuda(gpu)) label_pitch = Variable(labels[:,1].cuda(gpu)) label_roll = Variable(labels[:,2].cuda(gpu)) - label_angles = Variable(labels[:,:3].cuda(gpu)) + + label_angles = Variable(cont_labels[:,:3].cuda(gpu)) + label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu)) + label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu)) + label_roll_cont = Variable(cont_labels[:,2].cuda(gpu)) optimizer.zero_grad() model.zero_grad() @@ -208,17 +246,17 @@ loss_roll = criterion(pre_roll, label_roll) # MSE loss - yaw_predicted = F.softmax(pre_yaw) - pitch_predicted = F.softmax(pre_pitch) - roll_predicted = F.softmax(pre_roll) + yaw_predicted = softmax(pre_yaw) + pitch_predicted = softmax(pre_pitch) + roll_predicted = softmax(pre_roll) - yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) - pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) - roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99 + roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99 - loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) - loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) - loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont) + loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont) # Total loss loss_yaw += alpha * loss_reg_yaw @@ -226,9 +264,17 @@ loss_roll += alpha * loss_reg_roll # Finetuning loss - loss_angles = reg_criterion(angles[0], label_angles.float()) + loss_seq = [loss_yaw, loss_pitch, loss_roll] + for idx in xrange(1,len(angles)): + label_angles_residuals = label_angles - angles[0] * 3 - 99 + for idy in xrange(1,idx): + label_angles_residuals += angles[idy] * 3 - 99 + label_angles_residuals = label_angles_residuals.detach() + # Reconvert to other unit + label_angles_residuals = label_angles_residuals / 3.0 + 33 + loss_angles = smooth_l1_loss(angles[idx], label_angles_residuals) + loss_seq.append(loss_angles) - loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] torch.autograd.backward(loss_seq, grad_seq) optimizer.step() @@ -238,14 +284,10 @@ %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0])) # if epoch == 0: # torch.save(model.state_dict(), - # 'output/snapshots/hopenet50_iter_'+ str(i+1) + '.pkl') + # 'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. - if epoch % 1 == 0 and epoch < num_epochs_ft - 1: + if epoch % 1 == 0 and epoch < num_epochs_ft: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/hopenet50_epoch_'+ str(num_epochs+epoch+1) + '.pkl') - - - # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/hopenet50_epoch_' + str(num_epochs+epoch+1) + '.pkl') + 'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl') -- Gitblit v1.8.0