From 43416c4717d2430c3e11f042294d12b781fee2e1 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期三, 27 九月 2017 04:09:30 +0800
Subject: [PATCH] Failed lstm experiment

---
 code/train.py |  148 +++++++++++++++++++++++++++++++-----------------
 1 files changed, 95 insertions(+), 53 deletions(-)

diff --git a/code/train.py b/code/train.py
index 826793d..3525f87 100644
--- a/code/train.py
+++ b/code/train.py
@@ -43,6 +43,12 @@
           default='', type=str)
     parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
           default='', type=str)
+    parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
+    parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
+          default=0.001, type=float)
+    parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.',
+          default=1, type=int)
+    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
     args = parser.parse_args()
     return args
 
@@ -51,26 +57,37 @@
     b = []
     b.append(model.conv1)
     b.append(model.bn1)
+    for i in range(len(b)):
+        for module_name, module in b[i].named_modules():
+            if 'bn' in module_name:
+                module.eval()
+            for name, param in module.named_parameters():
+                yield param
+
+def get_non_ignored_params(model):
+    # Generator function that yields params that will be optimized.
+    b = []
     b.append(model.layer1)
     b.append(model.layer2)
     b.append(model.layer3)
     b.append(model.layer4)
     for i in range(len(b)):
-        for j in b[i].modules():
-            for k in j.parameters():
-                yield k
+        for module_name, module in b[i].named_modules():
+            if 'bn' in module_name:
+                module.eval()
+            for name, param in module.named_parameters():
+                yield param
 
-def get_non_ignored_params(model):
-    # Generator function that yields params that will be optimized.
+def get_fc_params(model):
     b = []
     b.append(model.fc_yaw)
     b.append(model.fc_pitch)
     b.append(model.fc_roll)
     b.append(model.fc_finetune)
     for i in range(len(b)):
-        for j in b[i].modules():
-            for k in j.parameters():
-                    yield k
+        for module_name, module in b[i].named_modules():
+            for name, param in module.named_parameters():
+                yield param
 
 def load_filtered_state_dict(model, snapshot):
     # By user apaszke from discuss.pytorch.org
@@ -97,50 +114,67 @@
     # ResNet101 with 3 outputs
     # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
     # ResNet50
-    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66, args.iter_ref)
     # ResNet18
     # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
     load_filtered_state_dict(model, model_zoo.load_url(model_urls['resnet50']))
 
     print 'Loading data.'
 
-    # transformations = transforms.Compose([transforms.Scale(224),
-    #                                       transforms.RandomCrop(224),
-    #                                       transforms.ToTensor()])
-
-    transformations = transforms.Compose([transforms.Scale(250),
+    transformations = transforms.Compose([transforms.Scale(240),
     transforms.RandomCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
-    pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list,
-                                transformations)
+    if args.dataset == 'Pose_300W_LP':
+        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'BIWI':
+        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW':
+        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW_aug':
+        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFW':
+        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
+    else:
+        print 'Error: not a valid dataset name'
+        sys.exit()
     train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                                batch_size=batch_size,
                                                shuffle=True,
                                                num_workers=2)
 
     model.cuda(gpu)
+    softmax = nn.Softmax()
     criterion = nn.CrossEntropyLoss().cuda()
     reg_criterion = nn.MSELoss().cuda()
+    smooth_l1_loss = nn.SmoothL1Loss().cuda()
     # Regression loss coefficient
-    alpha = 0.01
+    alpha = args.alpha
 
     idx_tensor = [idx for idx in xrange(66)]
-    idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu)
+    idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(gpu)
 
-    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr},
-                                  {'params': get_non_ignored_params(model), 'lr': args.lr * 10}],
-                                  lr = args.lr)
+    optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
+                                  {'params': get_non_ignored_params(model), 'lr': args.lr},
+                                  {'params': get_fc_params(model), 'lr': args.lr * 5}],
+                                   lr = args.lr)
 
     print 'Ready to train network.'
 
     print 'First phase of training.'
     for epoch in range(num_epochs):
-        for i, (images, labels, name) in enumerate(train_loader):
+        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
             images = Variable(images.cuda(gpu))
             label_yaw = Variable(labels[:,0].cuda(gpu))
             label_pitch = Variable(labels[:,1].cuda(gpu))
             label_roll = Variable(labels[:,2].cuda(gpu))
+
+            label_angles = Variable(cont_labels[:,:3].cuda(gpu))
+            label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu))
+            label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu))
+            label_roll_cont = Variable(cont_labels[:,2].cuda(gpu))
 
             optimizer.zero_grad()
             model.zero_grad()
@@ -153,17 +187,17 @@
             loss_roll = criterion(pre_roll, label_roll)
 
             # MSE loss
-            yaw_predicted = F.softmax(pre_yaw)
-            pitch_predicted = F.softmax(pre_pitch)
-            roll_predicted = F.softmax(pre_roll)
+            yaw_predicted = softmax(pre_yaw)
+            pitch_predicted = softmax(pre_pitch)
+            roll_predicted = softmax(pre_roll)
 
-            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
+            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
+            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
+            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
 
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
+            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
+            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
+            loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont)
 
             # Total loss
             loss_yaw += alpha * loss_reg_yaw
@@ -180,22 +214,26 @@
                        %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0]))
                 # if epoch == 0:
                 #     torch.save(model.state_dict(),
-                #     'output/snapshots/hopenet50_epoch_'+ str(i+1) + '.pkl')
+                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
 
         # Save models at numbered epochs.
         if epoch % 1 == 0 and epoch < num_epochs:
             print 'Taking snapshot...'
             torch.save(model.state_dict(),
-            'output/snapshots/hopenet50_epoch_'+ str(epoch+1) + '.pkl')
+            'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')
 
     print 'Second phase of training (finetuning layer).'
     for epoch in range(num_epochs_ft):
-        for i, (images, labels, name) in enumerate(train_loader):
+        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
             images = Variable(images.cuda(gpu))
             label_yaw = Variable(labels[:,0].cuda(gpu))
             label_pitch = Variable(labels[:,1].cuda(gpu))
             label_roll = Variable(labels[:,2].cuda(gpu))
-            label_angles = Variable(labels[:,:3].cuda(gpu))
+
+            label_angles = Variable(cont_labels[:,:3].cuda(gpu))
+            label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu))
+            label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu))
+            label_roll_cont = Variable(cont_labels[:,2].cuda(gpu))
 
             optimizer.zero_grad()
             model.zero_grad()
@@ -208,17 +246,17 @@
             loss_roll = criterion(pre_roll, label_roll)
 
             # MSE loss
-            yaw_predicted = F.softmax(pre_yaw)
-            pitch_predicted = F.softmax(pre_pitch)
-            roll_predicted = F.softmax(pre_roll)
+            yaw_predicted = softmax(pre_yaw)
+            pitch_predicted = softmax(pre_pitch)
+            roll_predicted = softmax(pre_roll)
 
-            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
+            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
+            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
+            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
 
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
+            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
+            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
+            loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont)
 
             # Total loss
             loss_yaw += alpha * loss_reg_yaw
@@ -226,9 +264,17 @@
             loss_roll += alpha * loss_reg_roll
 
             # Finetuning loss
-            loss_angles = reg_criterion(angles[0], label_angles.float())
+            loss_seq = [loss_yaw, loss_pitch, loss_roll]
+            for idx in xrange(1,len(angles)):
+                label_angles_residuals = label_angles - angles[0] * 3 - 99
+                for idy in xrange(1,idx):
+                    label_angles_residuals += angles[idy] * 3 - 99
+                label_angles_residuals = label_angles_residuals.detach()
+                # Reconvert to other unit
+                label_angles_residuals = label_angles_residuals / 3.0 + 33
+                loss_angles = smooth_l1_loss(angles[idx], label_angles_residuals)
+                loss_seq.append(loss_angles)
 
-            loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles]
             grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
             torch.autograd.backward(loss_seq, grad_seq)
             optimizer.step()
@@ -238,14 +284,10 @@
                        %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0]))
                 # if epoch == 0:
                 #     torch.save(model.state_dict(),
-                #     'output/snapshots/hopenet50_iter_'+ str(i+1) + '.pkl')
+                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
 
         # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs_ft - 1:
+        if epoch % 1 == 0 and epoch < num_epochs_ft:
             print 'Taking snapshot...'
             torch.save(model.state_dict(),
-            'output/snapshots/hopenet50_epoch_'+ str(num_epochs+epoch+1) + '.pkl')
-
-
-    # Save the final Trained Model
-    torch.save(model.state_dict(), 'output/snapshots/hopenet50_epoch_' + str(num_epochs+epoch+1) + '.pkl')
+            'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl')

--
Gitblit v1.8.0