From 43416c4717d2430c3e11f042294d12b781fee2e1 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期三, 27 九月 2017 04:09:30 +0800
Subject: [PATCH] Failed lstm experiment

---
 code/train.py |   70 +++++++++++++++++++++++++----------
 1 files changed, 50 insertions(+), 20 deletions(-)

diff --git a/code/train.py b/code/train.py
index 6e1ae5b..3525f87 100644
--- a/code/train.py
+++ b/code/train.py
@@ -48,6 +48,7 @@
           default=0.001, type=float)
     parser.add_argument('--iter_ref', dest='iter_ref', help='Number of iterative refinement passes.',
           default=1, type=int)
+    parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
     args = parser.parse_args()
     return args
 
@@ -124,8 +125,21 @@
     transforms.RandomCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
-    pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list,
-                                transformations)
+    if args.dataset == 'Pose_300W_LP':
+        pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW2000':
+        pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'BIWI':
+        pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW':
+        pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW_aug':
+        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFW':
+        pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
+    else:
+        print 'Error: not a valid dataset name'
+        sys.exit()
     train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
                                                batch_size=batch_size,
                                                shuffle=True,
@@ -135,6 +149,7 @@
     softmax = nn.Softmax()
     criterion = nn.CrossEntropyLoss().cuda()
     reg_criterion = nn.MSELoss().cuda()
+    smooth_l1_loss = nn.SmoothL1Loss().cuda()
     # Regression loss coefficient
     alpha = args.alpha
 
@@ -143,18 +158,23 @@
 
     optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
                                   {'params': get_non_ignored_params(model), 'lr': args.lr},
-                                  {'params': get_fc_params(model), 'lr': args.lr * 2}],
+                                  {'params': get_fc_params(model), 'lr': args.lr * 5}],
                                    lr = args.lr)
 
     print 'Ready to train network.'
 
     print 'First phase of training.'
     for epoch in range(num_epochs):
-        for i, (images, labels, name) in enumerate(train_loader):
+        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
             images = Variable(images.cuda(gpu))
             label_yaw = Variable(labels[:,0].cuda(gpu))
             label_pitch = Variable(labels[:,1].cuda(gpu))
             label_roll = Variable(labels[:,2].cuda(gpu))
+
+            label_angles = Variable(cont_labels[:,:3].cuda(gpu))
+            label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu))
+            label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu))
+            label_roll_cont = Variable(cont_labels[:,2].cuda(gpu))
 
             optimizer.zero_grad()
             model.zero_grad()
@@ -171,13 +191,13 @@
             pitch_predicted = softmax(pre_pitch)
             roll_predicted = softmax(pre_roll)
 
-            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
+            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
+            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
+            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
 
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
+            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
+            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
+            loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont)
 
             # Total loss
             loss_yaw += alpha * loss_reg_yaw
@@ -204,12 +224,16 @@
 
     print 'Second phase of training (finetuning layer).'
     for epoch in range(num_epochs_ft):
-        for i, (images, labels, name) in enumerate(train_loader):
+        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
             images = Variable(images.cuda(gpu))
             label_yaw = Variable(labels[:,0].cuda(gpu))
             label_pitch = Variable(labels[:,1].cuda(gpu))
             label_roll = Variable(labels[:,2].cuda(gpu))
-            label_angles = Variable(labels[:,:3].cuda(gpu))
+
+            label_angles = Variable(cont_labels[:,:3].cuda(gpu))
+            label_yaw_cont = Variable(cont_labels[:,0].cuda(gpu))
+            label_pitch_cont = Variable(cont_labels[:,1].cuda(gpu))
+            label_roll_cont = Variable(cont_labels[:,2].cuda(gpu))
 
             optimizer.zero_grad()
             model.zero_grad()
@@ -226,13 +250,13 @@
             pitch_predicted = softmax(pre_pitch)
             roll_predicted = softmax(pre_roll)
 
-            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
+            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
+            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
+            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
 
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
+            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
+            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
+            loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont)
 
             # Total loss
             loss_yaw += alpha * loss_reg_yaw
@@ -241,8 +265,14 @@
 
             # Finetuning loss
             loss_seq = [loss_yaw, loss_pitch, loss_roll]
-            for idx in xrange(args.iter_ref+1):
-                loss_angles = reg_criterion(angles[idx], label_angles.float())
+            for idx in xrange(1,len(angles)):
+                label_angles_residuals = label_angles - angles[0] * 3 - 99
+                for idy in xrange(1,idx):
+                    label_angles_residuals += angles[idy] * 3 - 99
+                label_angles_residuals = label_angles_residuals.detach()
+                # Reconvert to other unit
+                label_angles_residuals = label_angles_residuals / 3.0 + 33
+                loss_angles = smooth_l1_loss(angles[idx], label_angles_residuals)
                 loss_seq.append(loss_angles)
 
             grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]

--
Gitblit v1.8.0