From 43416c4717d2430c3e11f042294d12b781fee2e1 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期三, 27 九月 2017 04:09:30 +0800
Subject: [PATCH] Failed lstm experiment

---
 code/train_preangles.py |  118 +++++++++++++++-------------------------------------------
 1 files changed, 31 insertions(+), 87 deletions(-)

diff --git a/code/train_preangles.py b/code/train_preangles.py
index 5f23b25..4752aef 100644
--- a/code/train_preangles.py
+++ b/code/train_preangles.py
@@ -18,6 +18,8 @@
 import hopenet
 import torch.utils.model_zoo as model_zoo
 
+import time
+
 model_urls = {
     'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
     'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
@@ -32,8 +34,6 @@
     parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]',
             default=0, type=int)
     parser.add_argument('--num_epochs', dest='num_epochs', help='Maximum number of training epochs.',
-          default=5, type=int)
-    parser.add_argument('--num_epochs_ft', dest='num_epochs_ft', help='Maximum number of finetuning epochs.',
           default=5, type=int)
     parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
           default=16, type=int)
@@ -103,7 +103,6 @@
 
     cudnn.enabled = True
     num_epochs = args.num_epochs
-    num_epochs_ft = args.num_epochs_ft
     batch_size = args.batch_size
     gpu = args.gpu_id
 
@@ -124,15 +123,18 @@
     transforms.RandomCrop(224), transforms.ToTensor(),
     transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
 
-
     if args.dataset == 'Pose_300W_LP':
         pose_dataset = datasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
+    if args.dataset == 'Pose_300W_LP_random_ds':
+        pose_dataset = datasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFLW2000':
         pose_dataset = datasets.AFLW2000(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'BIWI':
         pose_dataset = datasets.BIWI(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFLW':
         pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations)
+    elif args.dataset == 'AFLW_aug':
+        pose_dataset = datasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
     elif args.dataset == 'AFW':
         pose_dataset = datasets.AFW(args.data_dir, args.filename_list, transformations)
     else:
@@ -144,9 +146,9 @@
                                                num_workers=2)
 
     model.cuda(gpu)
-    softmax = nn.Softmax()
-    criterion = nn.CrossEntropyLoss().cuda()
-    reg_criterion = nn.MSELoss().cuda()
+    softmax = nn.Softmax().cuda(gpu)
+    criterion = nn.CrossEntropyLoss().cuda(gpu)
+    reg_criterion = nn.MSELoss().cuda(gpu)
     # Regression loss coefficient
     alpha = args.alpha
 
@@ -155,24 +157,30 @@
 
     optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
                                   {'params': get_non_ignored_params(model), 'lr': args.lr},
-                                  {'params': get_fc_params(model), 'lr': args.lr * 2}],
+                                  {'params': get_fc_params(model), 'lr': args.lr * 5}],
                                    lr = args.lr)
 
     print 'Ready to train network.'
-
     print 'First phase of training.'
     for epoch in range(num_epochs):
-        for i, (images, labels, name) in enumerate(train_loader):
-            images = Variable(images.cuda(gpu))
-            label_yaw = Variable(labels[:,0].cuda(gpu))
-            label_pitch = Variable(labels[:,1].cuda(gpu))
-            label_roll = Variable(labels[:,2].cuda(gpu))
+        # start = time.time()
+        for i, (images, labels, cont_labels, name) in enumerate(train_loader):
+            # print i
+            # print 'start: ', time.time() - start
+            images = Variable(images).cuda(gpu)
+            label_yaw = Variable(labels[:,0]).cuda(gpu)
+            label_pitch = Variable(labels[:,1]).cuda(gpu)
+            label_roll = Variable(labels[:,2]).cuda(gpu)
+
+            label_angles = Variable(cont_labels[:,:3]).cuda(gpu)
+            label_yaw_cont = Variable(cont_labels[:,0]).cuda(gpu)
+            label_pitch_cont = Variable(cont_labels[:,1]).cuda(gpu)
+            label_roll_cont = Variable(cont_labels[:,2]).cuda(gpu)
 
             optimizer.zero_grad()
             model.zero_grad()
 
             pre_yaw, pre_pitch, pre_roll, angles = model(images)
-
             # Cross entropy loss
             loss_yaw = criterion(pre_yaw, label_yaw)
             loss_pitch = criterion(pre_pitch, label_pitch)
@@ -183,27 +191,25 @@
             pitch_predicted = softmax(pre_pitch)
             roll_predicted = softmax(pre_roll)
 
-            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)
+            yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
+            pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
+            roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
 
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
+            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
+            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
+            loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont)
 
-            # print yaw_predicted, label_yaw.float(), loss_reg_yaw
             # Total loss
             loss_yaw += alpha * loss_reg_yaw
             loss_pitch += alpha * loss_reg_pitch
             loss_roll += alpha * loss_reg_roll
 
-            loss_yaw *= 0.35
-
             loss_seq = [loss_yaw, loss_pitch, loss_roll]
-            # loss_seq = [loss_reg_yaw, loss_reg_pitch, loss_reg_roll]
             grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
             torch.autograd.backward(loss_seq, grad_seq)
             optimizer.step()
+
+            # print 'end: ', time.time() - start
 
             if (i+1) % 100 == 0:
                 print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f'
@@ -217,65 +223,3 @@
             print 'Taking snapshot...'
             torch.save(model.state_dict(),
             'output/snapshots/' + args.output_string + '_epoch_'+ str(epoch+1) + '.pkl')
-
-    print 'Second phase of training (finetuning layer).'
-    for epoch in range(num_epochs_ft):
-        for i, (images, labels, name) in enumerate(train_loader):
-            images = Variable(images.cuda(gpu))
-            label_yaw = Variable(labels[:,0].cuda(gpu))
-            label_pitch = Variable(labels[:,1].cuda(gpu))
-            label_roll = Variable(labels[:,2].cuda(gpu))
-            label_angles = Variable(labels[:,:3].cuda(gpu))
-
-            optimizer.zero_grad()
-            model.zero_grad()
-
-            pre_yaw, pre_pitch, pre_roll, angles = model(images)
-
-            # Cross entropy loss
-            loss_yaw = criterion(pre_yaw, label_yaw)
-            loss_pitch = criterion(pre_pitch, label_pitch)
-            loss_roll = criterion(pre_roll, label_roll)
-
-            # MSE loss
-            yaw_predicted = softmax(pre_yaw)
-            pitch_predicted = softmax(pre_pitch)
-            roll_predicted = softmax(pre_roll)
-
-            yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
-            pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
-            roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
-
-            loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float())
-            loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float())
-            loss_reg_roll = reg_criterion(roll_predicted, label_roll.float())
-
-            # Total loss
-            loss_yaw += alpha * loss_reg_yaw
-            loss_pitch += alpha * loss_reg_pitch
-            loss_roll += alpha * loss_reg_roll
-
-            # Finetuning loss
-            loss_angles = reg_criterion(angles[0], label_angles.float())
-
-            loss_seq = [loss_yaw, loss_pitch, loss_roll, loss_angles]
-            grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))]
-            torch.autograd.backward(loss_seq, grad_seq)
-            optimizer.step()
-
-            if (i+1) % 100 == 0:
-                print ('Epoch [%d/%d], Iter [%d/%d] Losses: pre-yaw %.4f, pre-pitch %.4f, pre-roll %.4f, finetuning %.4f'
-                       %(epoch+1, num_epochs_ft, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0], loss_angles.data[0]))
-                # if epoch == 0:
-                #     torch.save(model.state_dict(),
-                #     'output/snapshots/' + args.output_string + '_iter_'+ str(i+1) + '.pkl')
-
-        # Save models at numbered epochs.
-        if epoch % 1 == 0 and epoch < num_epochs_ft - 1:
-            print 'Taking snapshot...'
-            torch.save(model.state_dict(),
-            'output/snapshots/' + args.output_string + '_epoch_'+ str(num_epochs+epoch+1) + '.pkl')
-
-
-    # Save the final Trained Model
-    torch.save(model.state_dict(), 'output/snapshots/' + args.output_string + '_epoch_' + str(num_epochs+epoch+1) + '.pkl')

--
Gitblit v1.8.0