From 4b67b5c8ed5566ec3030d537536282e830d87e40 Mon Sep 17 00:00:00 2001 From: natanielruiz <nruiz9@gatech.edu> Date: 星期一, 30 十月 2017 07:15:49 +0800 Subject: [PATCH] next --- code/hopenet.py | 18 ++---------------- 1 files changed, 2 insertions(+), 16 deletions(-) diff --git a/code/hopenet.py b/code/hopenet.py index 0a98a66..c9e0b74 100644 --- a/code/hopenet.py +++ b/code/hopenet.py @@ -24,11 +24,8 @@ self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) + # Vestigial layer from previous experiments self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) - - # Used to get the expected value of angle from bins - self.softmax = nn.Softmax() - self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() for m in self.modules(): if isinstance(m, nn.Conv2d): @@ -72,18 +69,7 @@ pre_pitch = self.fc_pitch(x) pre_roll = self.fc_roll(x) - yaw = self.softmax(pre_yaw) - yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) - pitch = self.softmax(pre_pitch) - pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) - roll = self.softmax(pre_roll) - roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) - yaw = yaw.view(yaw.size(0), 1) - pitch = pitch.view(pitch.size(0), 1) - roll = roll.view(roll.size(0), 1) - preangles = torch.cat([yaw, pitch, roll], 1) - - return pre_yaw, pre_pitch, pre_roll, preangles + return pre_yaw, pre_pitch, pre_roll class ResNet(nn.Module): # ResNet for regression of 3 Euler angles. -- Gitblit v1.8.0