From 4b67b5c8ed5566ec3030d537536282e830d87e40 Mon Sep 17 00:00:00 2001 From: natanielruiz <nruiz9@gatech.edu> Date: 星期一, 30 十月 2017 07:15:49 +0800 Subject: [PATCH] next --- code/test_on_video.py | 15 ++++++++++----- 1 files changed, 10 insertions(+), 5 deletions(-) diff --git a/code/test_on_video.py b/code/test_on_video.py index c4172da..bbafbd8 100644 --- a/code/test_on_video.py +++ b/code/test_on_video.py @@ -47,7 +47,7 @@ if not os.path.exists(args.video_path): sys.exit('Video does not exist') - # ResNet50 + # ResNet50 structure model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) print 'Loading snapshot.' @@ -154,11 +154,16 @@ img = img.view(1, img_shape[0], img_shape[1], img_shape[2]) img = Variable(img).cuda(gpu) - yaw, pitch, roll, angles = model(img) + yaw, pitch, roll = model(img) - yaw_predicted = angles[:,0].data[0].cpu() - pitch_predicted = angles[:,1].data[0].cpu() - roll_predicted = angles[:,2].data[0].cpu() + yaw_predicted = F.softmax(yaw) + pitch_predicted = F.softmax(pitch) + roll_predicted = F.softmax(roll) + # Get continuous predictions in degrees. + yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) * 3 - 99 + pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) * 3 - 99 + roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) * 3 - 99 + # Print new frame with cube and axis txt_out.write(str(frame_num) + ' %f %f %f\n' % (yaw_predicted, pitch_predicted, roll_predicted)) # utils.plot_pose_cube(frame, yaw_predicted, pitch_predicted, roll_predicted, (x_min + x_max) / 2, (y_min + y_max) / 2, size = bbox_width) -- Gitblit v1.8.0