From 54818d253649ff588ed0054d10dabb2a3a170309 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 10 八月 2017 04:08:12 +0800 Subject: [PATCH] Doing pretty well now with resnet50 and adam with low learning rate. Also fixed test script to use large batches. --- code/datasets.py | 48 ++++++++++++++++++++++++++++++++++++++++++------ 1 files changed, 42 insertions(+), 6 deletions(-) diff --git a/code/datasets.py b/code/datasets.py index 0ab364e..4d1f71f 100644 --- a/code/datasets.py +++ b/code/datasets.py @@ -7,6 +7,10 @@ import utils +def stack_grayscale_tensor(tensor): + tensor = torch.cat([tensor, tensor, tensor], 0) + return tensor + class Pose_300W_LP(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): self.data_dir = data_dir @@ -66,7 +70,7 @@ return self.length class Pose_300W_LP_binned(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -76,14 +80,30 @@ self.X_train = filename_list self.y_train = filename_list + self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # Crop the face + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.15 + x_min -= k * abs(x_max - x_min) + y_min -= 4 * k * abs(y_max - y_min) + x_max += k * abs(x_max - x_min) + y_max += 0.4 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) + pose = utils.get_ypr_from_mat(mat_path) # And convert to degrees. pitch = pose[0] * 180 / np.pi yaw = pose[1] * 180 / np.pi @@ -102,7 +122,7 @@ return self.length class AFLW2000_binned(Dataset): - def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): + def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext @@ -112,14 +132,30 @@ self.X_train = filename_list self.y_train = filename_list + self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) - img = img.convert('RGB') + img = img.convert(self.image_mode) + mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) + + # Crop the face + pt2d = utils.get_pt2d_from_mat(mat_path) + x_min = min(pt2d[0,:]) + y_min = min(pt2d[1,:]) + x_max = max(pt2d[0,:]) + y_max = max(pt2d[1,:]) + + k = 0.15 + x_min -= k * abs(x_max - x_min) + y_min -= 4 * k * abs(y_max - y_min) + x_max += k * abs(x_max - x_min) + y_max += 0.4 * k * abs(y_max - y_min) + img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians - pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) + pose = utils.get_ypr_from_mat(mat_path) # And convert to degrees. pitch = pose[0] * 180 / np.pi yaw = pose[1] * 180 / np.pi -- Gitblit v1.8.0