From 54818d253649ff588ed0054d10dabb2a3a170309 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 10 八月 2017 04:08:12 +0800 Subject: [PATCH] Doing pretty well now with resnet50 and adam with low learning rate. Also fixed test script to use large batches. --- code/test_resnet_bins.py | 34 ++++++++++++++++++++-------------- 1 files changed, 20 insertions(+), 14 deletions(-) diff --git a/code/test_resnet_bins.py b/code/test_resnet_bins.py index 00d2109..699c9c9 100644 --- a/code/test_resnet_bins.py +++ b/code/test_resnet_bins.py @@ -42,16 +42,15 @@ args = parse_args() cudnn.enabled = True - batch_size = 1 gpu = args.gpu_id snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') # ResNet101 with 3 outputs. # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 - # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) # ResNet18 - model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) + # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) print 'Loading snapshot.' # Load snapshot @@ -66,7 +65,7 @@ pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list, transformations) test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, + batch_size=args.batch_size, num_workers=2) model.cuda(gpu) @@ -88,12 +87,14 @@ pitch_error = .0 roll_error = .0 + l1loss = torch.nn.L1Loss(size_average=False) + for i, (images, labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) total += labels.size(0) - label_yaw = labels[:,0] - label_pitch = labels[:,1] - label_roll = labels[:,2] + label_yaw = labels[:,0].float() + label_pitch = labels[:,1].float() + label_roll = labels[:,2].float() yaw, pitch, roll = model(images) @@ -107,14 +108,18 @@ roll_predicted = F.softmax(roll) # Continuous predictions - yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) - pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) - roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) + yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + + yaw_predicted = yaw_predicted.cpu() + pitch_predicted = pitch_predicted.cpu() + roll_predicted = roll_predicted.cpu() # Mean absolute error - yaw_error += abs(yaw_predicted - label_yaw[0]) * 3 - pitch_error += abs(pitch_predicted - label_pitch[0]) * 3 - roll_error += abs(roll_predicted - label_roll[0]) * 3 + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) # Binned Accuracy # for er in xrange(n_margins): @@ -125,13 +130,14 @@ # print label_yaw[0], yaw_bpred[0,0] # Save images with pose cube. + # TODO: fix for larger batch size if args.save_viz: name = name[0] cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) #print os.path.join('output/images', name + '.jpg') #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 - utils.plot_pose_cube(cv2_img, yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99) + utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) print('Test error in degrees of the model on the ' + str(total) + -- Gitblit v1.8.0