From 54818d253649ff588ed0054d10dabb2a3a170309 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 10 八月 2017 04:08:12 +0800 Subject: [PATCH] Doing pretty well now with resnet50 and adam with low learning rate. Also fixed test script to use large batches. --- code/test_resnet_bins.py | 71 ++++++++++++++++++++++++----------- 1 files changed, 48 insertions(+), 23 deletions(-) diff --git a/code/test_resnet_bins.py b/code/test_resnet_bins.py index 30aa158..699c9c9 100644 --- a/code/test_resnet_bins.py +++ b/code/test_resnet_bins.py @@ -31,6 +31,8 @@ default='', type=str) parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', default=1, type=int) + parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', + default=False, type=bool) args = parser.parse_args() @@ -40,12 +42,14 @@ args = parse_args() cudnn.enabled = True - batch_size = 1 gpu = args.gpu_id snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') - # ResNet50 with 3 outputs. + # ResNet101 with 3 outputs. + # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) + # ResNet50 model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) + # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) print 'Loading snapshot.' @@ -61,7 +65,7 @@ pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list, transformations) test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, - batch_size=batch_size, + batch_size=args.batch_size, num_workers=2) model.cuda(gpu) @@ -83,42 +87,63 @@ pitch_error = .0 roll_error = .0 + l1loss = torch.nn.L1Loss(size_average=False) + for i, (images, labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) - total += labels.size(0) - label_yaw = labels[:,0] - label_pitch = labels[:,1] - label_roll = labels[:,2] + label_yaw = labels[:,0].float() + label_pitch = labels[:,1].float() + label_roll = labels[:,2].float() yaw, pitch, roll = model(images) - # _, yaw_predicted = torch.max(yaw.data, 1) - # _, pitch_predicted = torch.max(pitch.data, 1) - # _, roll_predicted = torch.max(roll.data, 1) + + # Binned predictions + _, yaw_bpred = torch.max(yaw.data, 1) + _, pitch_bpred = torch.max(pitch.data, 1) + _, roll_bpred = torch.max(roll.data, 1) yaw_predicted = F.softmax(yaw) pitch_predicted = F.softmax(pitch) roll_predicted = F.softmax(roll) - yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) - pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) - roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) + # Continuous predictions + yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) - yaw_error += abs(yaw_predicted - label_yaw[0]) * 3 - pitch_error += abs(pitch_predicted - label_pitch[0]) * 3 - roll_error += abs(roll_predicted - label_roll[0]) * 3 + yaw_predicted = yaw_predicted.cpu() + pitch_predicted = pitch_predicted.cpu() + roll_predicted = roll_predicted.cpu() - # print yaw_predicted * 3, label_yaw[0] * 3, abs(yaw_predicted - label_yaw[0]) * 3 + # Mean absolute error + yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) + pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) + roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) - # for er in xrange(0,n_margins): - # yaw_correct[er] += (label_yaw[0] in range(yaw_predicted[0,0] - er, yaw_predicted[0,0] + er + 1)) - # pitch_correct[er] += (label_pitch[0] in range(pitch_predicted[0,0] - er, pitch_predicted[0,0] + er + 1)) - # roll_correct[er] += (label_roll[0] in range(roll_predicted[0,0] - er, roll_predicted[0,0] + er + 1)) + # Binned Accuracy + # for er in xrange(n_margins): + # yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1)) + # pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1)) + # roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1)) - # print label_yaw[0], yaw_predicted[0,0] - # 4 -> 15 + # print label_yaw[0], yaw_bpred[0,0] + + # Save images with pose cube. + # TODO: fix for larger batch size + if args.save_viz: + name = name[0] + cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) + #print os.path.join('output/images', name + '.jpg') + #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99 + #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99 + utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) + cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) + print('Test error in degrees of the model on the ' + str(total) + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, pitch_error / total, roll_error / total)) + + # Binned accuracy # for idx in xrange(len(yaw_correct)): # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total -- Gitblit v1.8.0