From 54818d253649ff588ed0054d10dabb2a3a170309 Mon Sep 17 00:00:00 2001
From: natanielruiz <nataniel777@hotmail.com>
Date: 星期四, 10 八月 2017 04:08:12 +0800
Subject: [PATCH] Doing pretty well now with resnet50 and adam with low learning rate. Also fixed test script to use large batches.

---
 code/test_resnet_bins.py |   71 ++++++++++++++++++++++++-----------
 1 files changed, 48 insertions(+), 23 deletions(-)

diff --git a/code/test_resnet_bins.py b/code/test_resnet_bins.py
index 30aa158..699c9c9 100644
--- a/code/test_resnet_bins.py
+++ b/code/test_resnet_bins.py
@@ -31,6 +31,8 @@
           default='', type=str)
     parser.add_argument('--batch_size', dest='batch_size', help='Batch size.',
           default=1, type=int)
+    parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.',
+          default=False, type=bool)
 
     args = parser.parse_args()
 
@@ -40,12 +42,14 @@
     args = parse_args()
 
     cudnn.enabled = True
-    batch_size = 1
     gpu = args.gpu_id
     snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl')
 
-    # ResNet50 with 3 outputs.
+    # ResNet101 with 3 outputs.
+    # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66)
+    # ResNet50
     model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
+    # ResNet18
     # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
 
     print 'Loading snapshot.'
@@ -61,7 +65,7 @@
     pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list,
                                 transformations)
     test_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
-                                               batch_size=batch_size,
+                                               batch_size=args.batch_size,
                                                num_workers=2)
 
     model.cuda(gpu)
@@ -83,42 +87,63 @@
     pitch_error = .0
     roll_error = .0
 
+    l1loss = torch.nn.L1Loss(size_average=False)
+
     for i, (images, labels, name) in enumerate(test_loader):
         images = Variable(images).cuda(gpu)
-
         total += labels.size(0)
-        label_yaw = labels[:,0]
-        label_pitch = labels[:,1]
-        label_roll = labels[:,2]
+        label_yaw = labels[:,0].float()
+        label_pitch = labels[:,1].float()
+        label_roll = labels[:,2].float()
 
         yaw, pitch, roll = model(images)
-        # _, yaw_predicted = torch.max(yaw.data, 1)
-        # _, pitch_predicted = torch.max(pitch.data, 1)
-        # _, roll_predicted = torch.max(roll.data, 1)
+
+        # Binned predictions
+        _, yaw_bpred = torch.max(yaw.data, 1)
+        _, pitch_bpred = torch.max(pitch.data, 1)
+        _, roll_bpred = torch.max(roll.data, 1)
 
         yaw_predicted = F.softmax(yaw)
         pitch_predicted = F.softmax(pitch)
         roll_predicted = F.softmax(roll)
 
-        yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor)
-        pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor)
-        roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor)
+        # Continuous predictions
+        yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1)
+        pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1)
+        roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1)
 
-        yaw_error += abs(yaw_predicted - label_yaw[0]) * 3
-        pitch_error += abs(pitch_predicted - label_pitch[0]) * 3
-        roll_error += abs(roll_predicted - label_roll[0]) * 3
+        yaw_predicted = yaw_predicted.cpu()
+        pitch_predicted = pitch_predicted.cpu()
+        roll_predicted = roll_predicted.cpu()
 
-        # print yaw_predicted * 3, label_yaw[0] * 3, abs(yaw_predicted - label_yaw[0]) * 3
+        # Mean absolute error
+        yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3)
+        pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3)
+        roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3)
 
-        # for er in xrange(0,n_margins):
-        #     yaw_correct[er] += (label_yaw[0] in range(yaw_predicted[0,0] - er, yaw_predicted[0,0] + er + 1))
-        #     pitch_correct[er] += (label_pitch[0] in range(pitch_predicted[0,0] - er, pitch_predicted[0,0] + er + 1))
-        #     roll_correct[er] += (label_roll[0] in range(roll_predicted[0,0] - er, roll_predicted[0,0] + er + 1))
+        # Binned Accuracy
+        # for er in xrange(n_margins):
+        #     yaw_bpred[er] += (label_yaw[0] in range(yaw_bpred[0,0] - er, yaw_bpred[0,0] + er + 1))
+        #     pitch_bpred[er] += (label_pitch[0] in range(pitch_bpred[0,0] - er, pitch_bpred[0,0] + er + 1))
+        #     roll_bpred[er] += (label_roll[0] in range(roll_bpred[0,0] - er, roll_bpred[0,0] + er + 1))
 
-        # print label_yaw[0], yaw_predicted[0,0]
-    # 4 -> 15
+        # print label_yaw[0], yaw_bpred[0,0]
+
+        # Save images with pose cube.
+        # TODO: fix for larger batch size
+        if args.save_viz:
+            name = name[0]
+            cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg'))
+            #print os.path.join('output/images', name + '.jpg')
+            #print label_yaw[0] * 3 - 99, label_pitch[0] * 3 - 99, label_roll[0] * 3 - 99
+            #print yaw_predicted * 3 - 99, pitch_predicted * 3 - 99, roll_predicted * 3 - 99
+            utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99)
+            cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img)
+
     print('Test error in degrees of the model on the ' + str(total) +
     ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total,
     pitch_error / total, roll_error / total))
+
+    # Binned accuracy
     # for idx in xrange(len(yaw_correct)):
     #     print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total

--
Gitblit v1.8.0