From 54818d253649ff588ed0054d10dabb2a3a170309 Mon Sep 17 00:00:00 2001 From: natanielruiz <nataniel777@hotmail.com> Date: 星期四, 10 八月 2017 04:08:12 +0800 Subject: [PATCH] Doing pretty well now with resnet50 and adam with low learning rate. Also fixed test script to use large batches. --- code/train_resnet_bins.py | 47 ++++++++++++++++++++++++++++++++++++++++++++--- 1 files changed, 44 insertions(+), 3 deletions(-) diff --git a/code/train_resnet_bins.py b/code/train_resnet_bins.py index dab3800..f98bbc3 100644 --- a/code/train_resnet_bins.py +++ b/code/train_resnet_bins.py @@ -6,6 +6,7 @@ from torchvision import transforms import torchvision import torch.backends.cudnn as cudnn +import torch.nn.functional as F import cv2 import matplotlib.pyplot as plt @@ -113,11 +114,19 @@ model.cuda(gpu) criterion = nn.CrossEntropyLoss() + reg_criterion = nn.MSELoss() + # Regression loss coefficient + alpha = 0.01 + lsm = nn.Softmax() + + idx_tensor = [idx for idx in xrange(66)] + idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) + optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr}, {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], lr = args.lr) # optimizer = torch.optim.SGD([{'params': get_ignored_params(model), 'lr': args.lr}, - # {'params': get_non_ignored_params(model), 'lr': args.lr}], + # {'params': get_non_ignored_params(model), 'lr': args.lr}], # lr = args.lr, momentum=0.9) # optimizer = torch.optim.RMSprop([{'params': get_ignored_params(model), 'lr': args.lr}, # {'params': get_non_ignored_params(model), 'lr': args.lr * 10}], @@ -134,24 +143,56 @@ optimizer.zero_grad() yaw, pitch, roll = model(images) + loss_yaw = criterion(yaw, label_yaw) loss_pitch = criterion(pitch, label_pitch) loss_roll = criterion(roll, label_roll) + # loss_seq = [loss_yaw, loss_pitch, loss_roll] + # grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + # torch.autograd.backward(loss_seq, grad_seq) + # optimizer.step() + + # MSE loss + yaw_predicted = F.softmax(yaw) + pitch_predicted = F.softmax(pitch) + roll_predicted = F.softmax(roll) + + yaw_predicted = torch.sum(yaw_predicted.data * idx_tensor, 1) + pitch_predicted = torch.sum(pitch_predicted.data * idx_tensor, 1) + roll_predicted = torch.sum(roll_predicted.data * idx_tensor, 1) + + loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw.float()) + loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch.float()) + loss_reg_roll = reg_criterion(roll_predicted, label_roll.float()) + + # print yaw_predicted[0], label_yaw.data[0] + + loss_yaw += alpha * loss_reg_yaw + loss_pitch += alpha * loss_reg_pitch + loss_roll += alpha * loss_reg_roll + loss_seq = [loss_yaw, loss_pitch, loss_roll] grad_seq = [torch.Tensor(1).cuda(gpu) for _ in range(len(loss_seq))] + model.zero_grad() torch.autograd.backward(loss_seq, grad_seq) optimizer.step() + + # print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' + # %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) if (i+1) % 100 == 0: print ('Epoch [%d/%d], Iter [%d/%d] Losses: Yaw %.4f, Pitch %.4f, Roll %.4f' %(epoch+1, num_epochs, i+1, len(pose_dataset)//batch_size, loss_yaw.data[0], loss_pitch.data[0], loss_roll.data[0])) + # if epoch == 0: + # torch.save(model.state_dict(), + # 'output/snapshots/resnet18_sgd_iter_'+ str(i+1) + '.pkl') # Save models at numbered epochs. if epoch % 1 == 0 and epoch < num_epochs - 1: print 'Taking snapshot...' torch.save(model.state_dict(), - 'output/snapshots/resnet18_cr_epoch_'+ str(epoch+1) + '.pkl') + 'output/snapshots/resnet18_sgd_epoch_'+ str(epoch+1) + '.pkl') # Save the final Trained Model - torch.save(model.state_dict(), 'output/snapshots/resnet18_cr_epoch_' + str(epoch+1) + '.pkl') + torch.save(model.state_dict(), 'output/snapshots/resnet18_sgd_epoch_' + str(epoch+1) + '.pkl') -- Gitblit v1.8.0